
Tango: rethinking quantization for
graph neural network training on GPUs

Shiyang Chen
Rutgers, The State University of New Jersey

Da Zheng∗
Amazon

Caiwen Ding
University of Connecticut

Chengying Huan
Institution of Software, Chinese Academy of

Sciences

Yuede Ji
University of North Texas

Hang Liu
Rutgers, The State University of New Jersey

ABSTRACT

Graph learning is becoming increasingly popular due to its superior
performance in tacklingmany grand challenges.While quantization
is widely used to accelerate Graph Neural Network (GNN) com-
putation, quantized training faces remarkable roadblocks. Current
quantized GNN training systems often experience longer training
time than their full-precision counterparts for two reasons: (i) ad-
dressing the quantization accuracy challenge leads to excessive
overhead, and (ii) the optimization potential exposed by quanti-
zation is not adequately leveraged. This paper introduces Tango
which re-thinks quantization challenges and opportunities for graph
neural network training on GPUs with three contributions: Firstly,
we introduce efficient rules to maintain accuracy during quantized
GNN training. Secondly, we design and implement quantization-
aware primitives and inter-primitive optimizations to speed up
GNN training. Finally, we integrate Tango with the popular Deep
Graph Library (DGL) system and demonstrate its superior perfor-
mance over the state-of-the-art approaches on various GNNmodels
and datasets.

ACM Reference Format:

Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan,
Yuede Ji, and Hang Liu. 2023. Tango: rethinking quantization for
graph neural network training on GPUs . In The International Conference

for High Performance Computing, Networking, Storage and Analysis (SC ’23),

November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3581784.3607037

1 INTRODUCTION

Graph analytics can claim a large share of the credit for tack-
ling many grand challenges of our time – such as understanding
the spread of pandemics [1], designing extremely large-scale in-
tegrated circuits [2], and uncovering software vulnerabilities [3],
among many others [4–11]. In particular, since the introduction
of the Graph Convolution Network (GCN) by Kipf and Welling in
2016 [12], GNNs have gained widespread popularity as a vibrant

∗The work is not related to the author’s position at Amazon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607037

field in graph analytics. This is primarily because various GNNmod-
els have shown promising results in addressing these challenges
through node and edge embedding-based designs. [13–21].

A typical GNN model often performs linear transformation, and
graph structure related operations on node feature (H), edge fea-
ture (E), and graph structure (G). Using Graph Attention Network
(GAT) [22] (refer to Figure 1, next page) as an example, this model
(i) applies a multilayer perception on node feature matrix, (ii) uses
graph topology to derive the edge features, and (iii) calculates the
destination feature by considering both the source node and edge
features. One could further extend the aforementioned steps (i) - (iii)
to multi-hop neighbors to derive multi-layer GATs. Of note, step
(i) is a GEneral Matrix Multiply (GEMM) primitive, while steps (ii)
and (iii) are sparse primitives, i.e., SParse-dense Matrix Multiplica-
tion (SPMM) and Sampled Dense-Dense Matrix product (SDDMM),
whose sparse nature is usually defined by the graph.

Quantization is a primary approach to accelerating Deep Neural
Network (DNN) and GNN models for two major optimizations op-
portunities, that is, quantization could lead to both computation and
data access reductions. On the one hand, for computation-intensive
primitives, e.g., GEMM, computing on quantized data is faster than
on a floating-point counterpart. For instance, computing with 8-bit
integers on tensor core offers 2× the throughput of 16-bit floating-
point and 32× that of 32-bit floating-point, respectively [23]. On the
other hand, for sparse primitives, i.e., SPMM and SDDMM, which
are data-intensive, quantization reduces the size of tensors, thus
reducing memory traffic and time consumption.

Whereas the challenge is that quantization errors (i.e., caused
by fewer bits) could prevent the model from achieving the desired
accuracy. Correspondingly, there mainly exist three tracks of re-
search efforts: (i) For multiply-and-accumulate operations in matrix
multiplication, limited precision can cause values of different mag-
nitudes to accumulate inaccurately. The proposed solutions are
chunk-based accumulation [24] and dynamically adjustable data
formats [25–27]. (ii) For weight updates in backpropagation, quan-
tization errors could negate the gradient update to the weights.
SWALP [28] proposes accumulating and updating the weight after
multiple training epochs. (iii) To mitigate divergence from quantiza-
tion errors, Zhu et al. [29] propose heuristics for gradient clipping
and learning rate adjustments.

Contemporary quantized GNN training systems often experi-
ence longer training time than their full-precision counterparts for
two reasons: (i) addressing the accuracy challenge results in signifi-

cant overhead. The computation of the proposed novel data formats
is inefficient because commodity GPUs support neither fixed-point

https://doi.org/10.1145/3581784.3607037
https://doi.org/10.1145/3581784.3607037
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607037&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, and Hang Liu

𝐃=(𝐇!⋅a"#$)𝐓

0.01 0.40 0.69 0.19
0.28 0.06 0.87 0.61
0.39 0.17 0.27 0.62
0.06 0.07 0.13 0.77

0.59 0.73 0.51 -0.65
0.76 0.73 0.79 -1.07
0.31 0.41 0.99 -0.53
0.57 0.00 0.71 -0.57

2

1

3
4

H(l-1)

Source: S

H(l)

𝐇!=𝐇(𝐥$𝟏) ⋅𝐖

(SDDMM
LeakyReLU)

(SPMM)

(GEMM)

𝐇!

(SPMM
SDDMM)

5

0.76 0.73 0.79 -1.07
0.57 0.01 0.71 -0.57
0.76 0.73 0.79 -1.07
0.49 0.61 0.77 -0.58

v1
v0 v2

v3

e0

e4
e1

e3

e2

1.20 1.35 0.65 0.53
-0.19 -0.33 0.09 -0.06

0.92 0.98 0.51 0.20
-0.07 -0.13 0.19 0.05

𝐒=(𝐇! ⋅𝐚'())𝐓

Destination: D

𝛂 E

Toy graph

(GEMM)

2.27 1.51 1.86 1.40 0.86
0.00 0.00 0.00 0.00 0.14
e0 e1 e2 e3 e4

1.00 1.00 1.00 0.63 0.37
1.00 1.00 1.00 0.46 0.54
e0 e1 e2 e3 e4

2

2

(G)

(a) GAT forward propagation.

(SPMM
on reversed graph)

2’

3’’

5’’

5’

∂H(l-1)

∂H(l)

V1

V0 V2

V3

e0

e4

e1

e3

e20.72 0.87 0.39 0.21
-0.34 0.99 1.75 0.27
0.81 0.76 -0.16 0.16
0.11 0.35 0.54 -0.30

0.23 0.65 0.48 0.29
1.56 1.57 -0.19 0.49
0.01 0.26 0.62 0.43
0.28 0.77 -0.21 0.25

Source: 𝜕𝐒

0.54 0.51 -0.26 -0.07
0.28 0.77 -0.27 0.19
1.02 1.06 0.07 0.56
0.25 0.90 1.04 0.63

0.08 0 -0.08 0
0 0 0.15 0

0 0 0 0
0 0 0 0.15

Destination: 𝜕𝐃
4’

(SDDMM)

Reverse of
the toy graph

(SPMM)

𝜕𝛂=𝜕𝐇(") ⋅𝐇$

3’(SPMM)
on reversed
graph

𝜕𝐄𝜕𝛂

1’

𝜕𝐇$

(GEMM)

(GEMM)

0.78 0.16 1.55 0.80 0.45
-0.13 -0.29 -0.54 -0.12 0.71

e0 e1 e2 e3 e4

0 0 0 0.08 -0.08
0 0 0 0 0.15
e0 e1 e2 e3 e4

(GEMM)

2’

(SPMM
SDDMM)
on reversed

 graph

(𝑮𝐓)

(b) GAT backward propagation.

Figure 1: GAT training on a toy graph, i.e., middle left of (a), with two heads. This example is used throughout this paper.

data format nor floating-point format with dynamically adjusted
exponent and mantissa. The model trained using SWALP or clipped
gradients needs more epochs to converge because the weights are
updated less frequently. (ii) The optimization potential offered by

quantization is not well-utilized. ActNN [30], TinyKG [31], and
EXACT [32] quantize the tensors to save memory and dequantize
them back to full-precision for computation, increasing the overall
training time [33, 34]. For example, TinyKG with 8-bit quantiza-
tion is 54.1% slower than using FP32. Of note, Degree-Quant [35]
performs Quantization-Aware Training (QAT) [36–42] that uses
full-precision to “simulate quantization” in training to reduce the
error for quantized inference, which, again, experiences longer
training time.

This paper introduces Tango, the first GPU-based quantized
GNN training system that both maintains the model accuracy and
reduces turnaround time when compared to the full precision coun-
terpart. Particularly, Tango encompasses three contributions:

• We introduce several lightweight rules to maintain accu-
racy for quantized GNN training. The rules include GPU-
accelerated stochastic rounding, derivation of proper quanti-
zation bit count, novel quantization-aware GEMM, SPMM,
and SDDMM, and full precision weight update and softmax.

• We design and implement a quantization-aware system to re-
duce the GNN training time onGPUs. Our techniques include
GEMMwith on-the-fly quantization, incidence-matrix-based
adaptive SPMM, SDDMM with on-the-fly dequantization,
and inter-primitive optimizations.

• For ease of use, we integrate Tango with DGL, which uses
PyTorch as the backend. Therefore, all existing DGL-based
models can enjoy the performance benefits from Tango
without any changes.We demonstrate that Tango constantly
outperforms state of the art for all evaluated GNN models
while maintaining the training accuracy.

The remainder of this paper is organized as follows: Section 2
presents the background. Section 3 discusses the design and tech-
niques in Tango. Specifically, Section 3.1 describes the challenges
and opportunities of Tango, Section 3.2 illustrates the lightweight
rules for maintaining training accuracy during quantization, and

Section 3.3 presents the systematic effort on quantization accel-
erated training. We evaluate Tango in Section 4, describe related
work in Section 5, and conclude in Section 6.

2 BACKGROUND

2.1 A running example for GAT training

This section uses a running example to illustrate how to express
the forward and backward computations of GAT with three key
primitives, i.e., GEMM, SPMM, and SDDMM.
Primitives for forward computation. Figure 1a presents the
forward workflow of GAT on a toy graph, i.e., node projection (1 -
2), attention computation (3 - 4), and message aggregation (5).
In step 1 , GAT resorts to GEMM primitive to perform a linear

transformation for node features, i.e., H′ = H
(𝑙−1) ·W. In H

(𝑙−1) ,
where each row of H(𝑙−1) , in the same color, represents the features
of one node. Each node feature contains two heads inH

(𝑙−1) . Using
the first row of H(𝑙−1) as an example, [0.01, 0.40] is the first head,
and the remaining two values belong to the second head. W is the
learnable weight matrix for linear transformation.

In step 2 , GAT consolidates each head of the feature vector into
one scalar by GEMM, i.e., S = (H′ · a𝑠𝑟𝑐)𝑇 and D = (H′ · a𝑑𝑠𝑡)𝑇 .
Using node v0 of 2 as an example, for the source feature, [0.59,
0.73]×[0.91, 0.90]𝑇 = 1.20, and [0.51, -0.65]×[0.42, 0.62] = -0.19.
Similarly, we can derive the entire S and D.

In step 3 , the source (S) and destination (D) node feature ma-
trices are combined by an SDDMM primitive to arrive at the edge
feature E. Formally, the SDDMM is defined as E = G ⊙ (S ⊕ D𝑇),
where every row of S computes against every row of D with the
customized operation ⊕, and ⊙ is a Hadamard product operator.
The resultant matrix E is masked out by the sparse adjacency ma-
trix G of the graph so E[𝑖] [𝑗] = 0 when there is no edge between
𝑣𝑖 and 𝑣 𝑗 . In Figure 1a, ⊕ denotes addition. Using edge 𝑒3 as an
example, since it connects source 𝑣0 and destination 𝑣3, we arrive
at [1.20, -0.19] + [0.20, 0.05] = [1.40, -0.14] for 𝑒3. Then an element-
wise LeakyReLU is applied to the edge features. Particularly, each
non-negative entry in E is unchanged while negative ones become
close to 0, which we use 0 to represent. Hence [1.40, -0.14] becomes
[1.40, 0.00] in Figure 1a.

In step 4 , edges of the same destination come together to com-
pute the head-wise attention scores through softmax operation.

Tango: rethinking quantization for

graph neural network training on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

Using node 𝑣3 as an example, it has 𝑒3 and 𝑒4 as the incoming edges.
Therefore, the attention scores of 𝑒3 and 𝑒4 are computed as 0.63 =
𝑒1.40

𝑒1.40+𝑒0.86 , and 0.46 = 𝑒0

𝑒0+𝑒0.14 for 𝑒3, and 0.37 = 𝑒0.86

𝑒1.41+𝑒0.86 and 0.54 =
𝑒0.14

𝑒0+𝑒0.14 for 𝑒4. Putting this example into a general formula, we use
SPMM and SDDMM operations together to compute the denomi-
nator as follows: First, we use SPMM to aggregate the in-edges for
every node such as M′ = (G ⊙ 𝑒𝑥𝑝 (E)) · 1. Of note, 1 is an all ‘1’
dense matrix. Second, since the first step computed the denomi-
nator for each destination vertex, we use SDDMM to assign this
denominator back to each incoming edge via E′ = G ⊙ (1 ·M′𝑇).
Subsequently, 𝜶 =

𝑒𝑥𝑝 (E)
E′ .

In step 5 , GAT performs an SPMM to derive the new node
embedding via H(𝑙) = (G ⊙ 𝜶) · H′. Intuitively, this step derives
the new embedding by computing the weighted sum of all the
incoming neighbors to a destination vertex. Using 𝑣3 as an example,
its incoming neighbors are {v0, v2}. We arrive at H(𝑙) [𝑣3] = 𝜶 [𝑒3] ·
H′[𝑣0] + 𝜶 [𝑒4] · H′[𝑣2], resulting in [0.49, 0.61, 0.77, -0.58].
Primitives for backward computation. Figure 1b is the back-
ward pass of Figure 1a. Steps 5’ (SPMM) and 5” (SDDMM) of
Figure 1b are the corresponding backward operations for step 5 in
Figure 1a. In the forward SPMM operation (5),H(𝑙) = (G⊙𝜶) ·H′,
we hence disperse the gradients of H(𝑙) to both H′ and 𝜶 . First,
we arrive at 𝜕H′ = (G𝑇 ⊙ 𝜶) · 𝜕H(𝑙) , which is an SPMM (5’)
on the reversed graph since the updated node feature H(𝑙) is ag-
gregated from the source node feature. Using 𝜕H[𝑣1] as an ex-
ample, it receives gradients from both 𝑒0 and 𝑒2. Therefore, we
arrive at 𝜕H(𝑙−1) [𝑣1] = 𝜶 [𝑒0] · 𝜕H(𝑙) [𝑣0] + 𝜶 [𝑒2] · 𝜕H(𝑙) [𝑣2]. That
is, [1.56,1.57,-0.19,0.49]= 1.0×[0.54, 0.51] + 1.0×[1.02,1.06] ∥𝑐𝑜𝑛𝑐𝑎𝑡
1.0×[-0.26, -0.07] + 1.0×[0.07,0.56]. Second, we have 𝜕𝜶 = G ⊙
(𝜕H(𝑙) ·H′𝑇), which is an SDDMM operator on the original graph,
where it performs row-wise dot-product (5”). Using 𝜕𝜶 [𝑒0] as
an example, it connects nodes 𝑣1 and 𝑣0, we arrive at 𝜕𝜶 [𝑒0] =

𝜕H(𝑙) [𝑣0] · H′[𝑣1]. In the example, we get [0.78,-0.13] =[0.54,0.51]
× [0.76,0.73] 𝑇 ∥𝑐𝑜𝑛𝑐𝑎𝑡 [-0.26,-0.07]×[0.79,-1.07]𝑇 .

Step 4’ computes the gradient of edge features using attention
scores. Using 𝑒3 as an example, we compute 𝜕E[𝑒3] = 𝜶 [𝑒3] (𝜕𝜶 [𝑒3]−
(𝜕𝜶 [𝑒3]𝜶 [𝑒3] + 𝜕𝜶 [𝑒4]𝜶 [𝑒4])) based on the derivative of softmax
operation. We first use SPMM to aggregate the incoming edge
features for every node P = (G ⊙ 𝜕𝜶 ⊙ 𝜶) · 1. For example,
𝜕𝜶 [𝑒3]𝜶 [𝑒3] + 𝜕𝜶 [𝑒4]𝜶 [𝑒4] is the aggregation on 𝑣3 as 0.80×0.63 +
0.45×0.37 = 0.67 for the first head. Then we compute the final gradi-
ent for every edge with SDDMM, 𝜕E = 𝜶 ⊙ (𝜕𝜶 − (G𝑇 ⊙ (P · 1𝑇))).
That is, every node feature P is assigned to their out-edges in the
reversed graph, and then computed with 𝜕𝜶 and 𝜶 . The gradient
of the first head of 𝑒3 is 0.63 × (0.80 - 0.67) = 0.08.

In step 3’ and 3” , the gradient of edge attention score is used to
compute the source feature and destination feature with two SPMM

operations, 𝜕S = (G𝑇 ⊙ 𝜕E) · 1 and 𝜕D = (G ⊙ 𝜕E) · 1, where nodes
aggregate their out-edge and in-edge attention scores, respectively.
Still use 𝑣3 as an example, its gradient 𝜕S[𝑣3] = 𝜕E[𝑒1] = [0, 0] and
𝜕D[𝑣3] = 𝜕E[𝑒3] + 𝜕E[𝑒4] = [0, 0.15]. The gradients from multiple
out-edges are accumulated.

Note steps 2’ and 1’ , which do not depend on the graph struc-
ture, will follow the traditional DNN back propagation method for
gradient computation. We skip the details.

2.2 GNN models

There exist a variety of GNNmodels. Graph Convolutional Network
(GCN) [12] derives a graph convolutional operator through spectral
graph theory. It can be expressed by GEMM and SPMM operations.
Later, GraphSAGE [13] uses sampling to encode the graph topology
for inductive learning. The model is applicable for unseen nodes be-
cause it learns the feature from sampled sub-graph. GraphSAGE can
be implemented with GEMM and SPMM.GAT [22] further introduces
graph attention mechanisms that can attend to various neighbors
with weights. This model contains GEMM, SPMM, and SDDMM
primitives. Later, Relational GCN (RGCN) extends GCN via assign-
ing different parameters to edges with different types [43, 44]. Here,
RGCN consists of GEMM and SPMM primitives. HGT proposes a
transformer-based GNN model for heterogeneous graphs [45]. It
contains different parameters for distinct edge and node types. This
model includes GEMM, SDDMM, and SPMM primitives.

We study two GNN models, i.e., GCN and GAT, for two reasons:
(i) These two models are the most popular and cover all the required
primitives for most GNN models. (ii) These two models contain
relatively large and complete training and testing datasets.

2.3 Quantization

For a collection of values X = {X𝑖 | X𝑖 ∈ [X𝑚𝑖𝑛,X𝑚𝑎𝑥]} which
are represented in full precision, quantization uses fewer number
of bits (i.e., B) to represent each X𝑖 . Quantization scatters X into
2𝐵 − 1 buckets. Subsequently, all the X𝑖 ’s in the same bucket are
represented as the same value, i.e., the bucket value.

For uniform quantization, we assign each bucket the same value
range, that is, 𝑠 =

𝛼−𝛽
2𝐵−1 , where [𝛼, 𝛽] is the clipping range of X.

There are also nonuniform quantization whose quantized values are
not necessarily uniformly spaced. If one wants to include the entire
value range of X, one needs 𝛼 = X𝑚𝑖𝑛 , and 𝛽 = X𝑚𝑎𝑥 . Formally,

X𝑖,𝑄𝑢𝑎𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑 (
X𝑖

𝑠
) − 𝑍, (1)

where𝑍 =
𝛼+𝛽
2 is the zero point after quantization. One can recover

the original value X𝑖 by dequantizing X𝑖,𝑄𝑢𝑎𝑛𝑡 :

X𝑖 ≈ 𝑠 · (X𝑖,𝑄𝑢𝑎𝑛𝑡 + 𝑍) . (2)

Quantization further includes the following three configurations:
(i) Asymmetric vs. symmetric quantization. Particularly, for 𝑠 , one
can let −𝛼=𝛽=max(|X𝑚𝑎𝑥 |, |X𝑚𝑖𝑛 |). While asymmetric quantiza-
tion will likely enjoy a more precise clipping range when compared
to symmetric quantization, the latter design, however, simplifies
the quantization function in Equation 1 as 𝑍 =

𝛼+𝛽
2 = 0. (ii) Quan-

tization granularity concerns about the size of X. Using a matrix as
an example, we can extract the same 𝑠 for the entire matrix or one 𝑠
per row/column of a matrix. The latter has a finer granularity than
the former. (iii) Static vs dynamic quantization determines whether
we change 𝑠 for the same tensor X from iteration to iteration. The
dynamic version does so, while the static one does not. In Tango,
we adopt symmetric, tensor-level granularity, dynamic quantization
to maintain training accuracy and enhance training speed.

SC ’23, November 12–17, 2023, Denver, CO, USA Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, and Hang Liu

3 TANGO: AN ACCURACY AND SPEED

CO-DESIGNED QUANTIZATION SYSTEM

3.1 Tango overview

Our key observation is that quantization presents both challenges

and opportunities for GNN training. Tango aims to tackle the chal-
lenges efficiently while extracting quantization benefits as follows:

Challenge: Maintaining training accuracy poses three is-
sues: (i) quantization could introduce additional computation tasks
in addition to the steps in Figure 1. We need to reduce the over-
head brought by those additional computations. (ii) For various
operations in GNN training (in Figure 1), we need to decide what
operations should be quantized and how we should quantize the
tensors in each operator to meet the training accuracy requirements.
In addition, (iii) those rules should expose optimization opportuni-
ties for Tango to accelerate the most time-consuming operations
in GNN training with quantization.

In this paper, (i) we introduce GPU-friendly stochastic rounding
and a lightweight operation to determine the required # of quanti-
zation bits, reducing the cost of meeting accuracy requirements. (ii)
We determine that weight update and softmax operations should
be performed in full precision, while GEMM, SPMM, and SDDMM
can be performed in our novel quantization-aware manner. This
minimizes the impact on training accuracy while providing critical
optimization opportunities for reducing turnaround time. Notably,
(iii) GEMM, SPMM, and SDDMM are the most time-consuming
phases in GNN, and our quantization-aware design offers opti-
mization opportunities (see below) to reduce computation costs in
GEMM and memory costs for SPMM and SDDMM.

Opportunity: Accelerating training by quantization. Quan-
tization offers two avenues to improve training speed, that is, higher
computation throughput and less memory traffic with values in
lower precision. We use quantized computing to accelerate the
most computation-intensive primitives and operations, i.e., GEMM,
SPMM and SDDMM. However, the problem is that these primitives

are highly optimized and fine-tuned by commercial libraries. And
CUBLAS GEMM and cuSPARSE SPMM, and SDDMM are closed-
source. Integrating our proposed optimizations into these kernels
and achieving the desired speedup is extremely challenging.

In this paper, (i) we utilize our novel quantization-aware GEMM
to reduce computation time. Moreover, we identify an optimal tiling
strategy to overlap the on-the-fly quantization of the matrix with
the subsequent quantized computations. (ii) To address the memory-
intensive nature of SPMM and SDDMM, we sequentially quantize
the input tensor and write the quantized value in memory. The
computation then randomly accesses the smaller quantized tensor,
which provides better cache behavior than direct random access to
full-precision tensors.

3.2 Lightweight rules for maintaining training

accuracy during quantized training

GPU-accelerated stochastic rounding.Weadopt stochastic round-
ing to reduce the quantization error [46], with which the expecta-
tion of the quantization error should be 0 statistically. In particular,
given a scaled floating-point number 𝑥 between [−2𝐵−1−1, +2𝐵−1−

1] as the range of 𝐵-bit integers, we round it to integer based on:

𝑥𝑄𝑢𝑎𝑛𝑡 =

{
𝑓 𝑙𝑜𝑜𝑟 (𝑥) + 1, 𝑤/𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑥 − 𝑓 𝑙𝑜𝑜𝑟 (𝑥) ;
𝑓 𝑙𝑜𝑜𝑟 (𝑥), 𝑤/𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − (𝑥 − 𝑓 𝑙𝑜𝑜𝑟 (𝑥)) .

(3)
We design and implement a GPU-accelerated pseudo-random

number generator to facilitate fast stochastic rounding, which is
∼20× faster than the native cuRAND random number generator
on GPU [47]. Our key optimization is storing random generator
states in GPU registers as opposed to in global memory, which is
the case in the existing cuRAND library [47]. Since the random
number generator is a memory-bound operation, this optimiza-
tion helps significantly improves the throughput. Of note, because
cuRAND is closed-source, we cannot directly integrate this opti-
mization into cuRAND. We thus implement our generator based
upon xoshiro256++[48] with our memory optimizations.

Lightweight rule for deriving # of desired quantization

bits.We develop a metric to measure the quantization error, which
subsequently helps derive the # of desired quantization bits. During
quantization, a value X𝑖 will be rounded to one of the quantization
grid points X𝑖,𝑄𝑢𝑎𝑛𝑡 . We introduce the following metric to estimate
the quantization error of a tensor X:

𝐸𝑟𝑟𝑜𝑟X =
1
𝑁

𝑁∑︁
𝑖=1

���� X𝑖 − X𝑖,𝑄𝑢𝑎𝑛𝑡

X𝑖 + X𝑖,𝑄𝑢𝑎𝑛𝑡 + 𝜖

���� , (4)

where 𝑁 is the number of elements in the tensor.
Intuitively, 𝐸𝑟𝑟𝑜𝑟X derives the relative quantization error of a

tensor X, where the numerator, i.e.,
��
X𝑖 − X𝑖,𝑄𝑢𝑎𝑛𝑡

�� is the absolute
quantization error while the denominator is the sum ofX𝑖 ,X𝑖,𝑄𝑢𝑎𝑛𝑡 ,
and 𝜖 . The denominator needs the sum of the three values for two
reasons: (i) a small 𝜖 to avoid dividing by zero, i.e., when X𝑖 =

X𝑖,𝑄𝑢𝑎𝑛𝑡 = 0. Tango chooses 𝜖 = 0.0005. Of note, Tango does
not experience X𝑖 + X𝑖,𝑄𝑢𝑎𝑛𝑡 = 0 when X𝑖 ≠ 0 and X𝑖,𝑄𝑢𝑎𝑛𝑡 ≠ 0
because our quantization is symmetric. (ii) If we use 𝜖 with only
either X𝑖 or X𝑖,𝑄𝑢𝑎𝑛𝑡 as the denominator, we could suffer from
quantization error divided by 𝜖 . This would lead to an extremely
large relative error for a particular X𝑖 , overshadowing the relative
quantization error of other X𝑖 ’s.

Our proposed quantization error metric in Equation 4 is a rel-
ative error thus inductive. That is, this parameter could be used
to compare the quantization error across tensors. Therefore, we
can tune a desired 𝐸𝑟𝑟𝑜𝑟X that is generally applicable for various
tensors. The value range of 𝐸𝑟𝑟𝑜𝑟X is [0, 1]. Particularly, if X𝑖 has
no rounding error, the corresponding error is 0. When the rounding
error of X𝑖 is significant, the term approaches 1.

We leverage Equation 4 to select the desired number of quantiza-
tion bits as follows: we compute 𝐸𝑟𝑟𝑜𝑟X of the output tensor of the
first GNN layer with quantization. Note that we do not apply this
metric to the input tensor of the first layer because its quantization
error can be recovered by learning from the graph structure [49].
We also want to mention that the training process could potentially
amend the quantization error when the bit count is even lower. Our
bit count derivation metric derives a lower bound bit count that
could maintain the training accuracy.

As shown in Figure 2a, our heuristic demonstrates that when
𝐸𝑟𝑟𝑜𝑟X < 0.3, Tango can maintain the accuracy requirement across
various datasets. Therefore, we let 𝐸𝑟𝑟𝑜𝑟X = 0.3 across all datasets.

Tango: rethinking quantization for

graph neural network training on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

0.00 0.25 0.50 0.75 1.00
ErrorX

0.0

0.5

1.0

A
cc

u
ra

cy
lo

ss

ErrorX=0.3

ogbn-arxiv
Pubmed
ogbn-products

(a) Training accuracy vs 𝐸𝑟𝑟𝑜𝑟X.

2 4 6 8 10 12 14 16

B (Number of bits)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
or

X

ErrorX=0.3

ogbn-arxiv: 8 Bits
pubmed: 6 Bits
ogbn-products: 8 Bits

(b) 𝐸𝑟𝑟𝑜𝑟X vs 𝐵.

Figure 2: The accuracy for different 𝐸𝑟𝑟𝑜𝑟X and the required

number of bits to retain the desired 𝐸𝑟𝑟𝑜𝑟X for ogbn-arxiv,

Pubmed, and ogbn-products datasets.

Figure 2b shows that the desired number of bits for ogbn-arxiv,
Pubmed, and ogbn-products are 8, 6, and 8, respectively.

The benefit of our metric is as follows: because our lightweight
rule calculates the 𝐸𝑟𝑟𝑜𝑟X solely for the first layer during the initial
epoch. In contrast, determining the accuracy loss typically neces-
sitates training the model until convergence (i.e., all epochs). The
effectiveness of our approach is demonstrated by our empirical
findings presented in Fig 2(a), which shows that 𝐸𝑟𝑟𝑜𝑟X <= 0.3 is
a general threshold to maintain the accuracy across datasets.

Novel quantization-aware matrix multiplication with scal-

ing factor computation. Since the majority of the tensor primi-
tives in GNN are either dense matrix multiplication or a variant of it,
the accuracy analysis would be similar across these primitives. We
hence restrict our accuracy analysis to dense matrix multiplication
(i.e., GEMM) for brevity.

For two reasons, the resultant matrix of a quantized matrix mul-
tiplication has to be of higher precision. First, the result of a mul-
tiplication operation between two 8-bit integers could go beyond
the value range of an 8-bit integer. Second, the subsequent accumu-
lation of the multiplied values can again push the value beyond the
range of an 8-bit integer.

0.01 0.40 0.69 0.19
0.28 0.06 0.87 0.61
0.39 0.17 0.27 0.62
0.06 0.07 0.13 0.77

H(l-1)

W

-0.77 0.61 0.94 0.18
0.09 0.60 0.86 0.16
0.63 0.76 0.01 -0.86
0.69 -0.22 0.77 -0.63

1 58 101 28
41 9 127 89
57 25 39 91
9 10 19 112

-104 82 127 24
12 81 116 22
85 103 1 -116
93 -30 104 -85

𝐇!"#$%
('()) with s𝐇= 0.0069

𝐖!"#$%with s𝐖= 0.074

(𝐇!"#$%
('()) ⋅𝐖!"#$%)-./0

with s𝐇!= 166.26

Quant

GEMM

0.60 0.73 0.50 -0.65
0.76 0.74 0.79 -1.07
0.31 0.40 1.00 -0.52
0.57 0.01 0.71 -0.57

H’

Quant

Figure 3: Quantization for GEMM of step 1 in Figure 1a.

Figure 3 presents this problem when we perform H
(𝑙−1) ·W in

quantized mode. After quantization, the first row of H(𝑙−1)
𝑄𝑢𝑎𝑛𝑡

, i.e.,
[1 58 101 28] multiplies with the first column of W𝑄𝑢𝑎𝑛𝑡 , i.e., [-104
12 85 93]𝑇 experiences both issues mentioned above. In fact, all the
entries in the resultant matrix (H(𝑙−1)

𝑄𝑢𝑎𝑛𝑡
·W𝑄𝑢𝑎𝑛𝑡)𝑖𝑛𝑡32 exceed the

8-bit range of [−127, 127]. Therefore, we opt for a 32-bit data format
to store the result to avoid this overflow problem. The good news
is that storing the results in 32-bit integers introduces negligible
overheads on commodity GPUs. Also, note that recent tensor core
units on NVIDIA GPUs force the resultant matrix to be a 32-bit
integer matrix for the input of two 8-bit integer matrices.

To reduce the quantization overheads, Tango directly dequan-
tizes the GEMM results, i.e.,H′ into FP32 after computing the resul-
tant matrix with our optimizations. In the meantime, Tango also
derives the scaling factor 𝑠

H
′=166.26 during the quantized GEMM

operation, as shown in Figure 3. This design avoids a dedicated
dequantization kernel, a scaling factor computation kernel, and the
associated expensive global memory accesses.

Full precision weight update. To combat the round-off error,
we update the model weights with dequantized FP32 gradients. The
reason is that the magnitude of the model weight is often signif-
icantly larger than the gradients. In addition, the small learning
rate further amplifies the difference. Previously, existing projects
use shared exponent [27], Flexpoint [25], or delayed updates [50]
to tackle the round-off error. Unfortunately, these designs could
suffer from shortcomings of delayed convergence, unavailability on
commodity GPUs, being slow to implement on GPUs, or multiple
of these shortcomings [51, 52]. Of note, although the updated FP32
weights are quantized into 8-bit integers in the next iteration, quan-
tizing the updated weights into 8-bit integers is often better than
directly updating the quantized weights with quantized gradients
as elaborated below.

Assuming𝑊𝑓 𝑢𝑙𝑙 =𝑊𝑞𝑢𝑎𝑛𝑡+𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓 andΔ𝑊𝑓 𝑢𝑙𝑙 = Δ𝑊𝑞𝑢𝑎𝑛𝑡+
Δ𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓 , where𝑊𝑓 𝑢𝑙𝑙 and Δ𝑊𝑓 𝑢𝑙𝑙 are weights and update
values (e.g. gradients) of full precision, respectively.𝑊𝑞𝑢𝑎𝑛𝑡 and
Δ𝑊𝑞𝑢𝑎𝑛𝑡 are the output from the quantization function𝑄 .𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓
and Δ𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓 are the correspondingly round-off errors. Below
is our analysis:

𝑄 (𝑊𝑓 𝑢𝑙𝑙) +𝑄 (Δ𝑊𝑓 𝑢𝑙𝑙) =𝑊𝑞𝑢𝑎𝑛𝑡 + Δ𝑊𝑞𝑢𝑎𝑛𝑡 . (5)

If we add the full precision before quantization, we arrive at:

𝑄 (𝑊𝑓 𝑢𝑙𝑙 + Δ𝑊𝑓 𝑢𝑙𝑙) ∼𝑊𝑞𝑢𝑎𝑛𝑡 + Δ𝑊𝑞𝑢𝑎𝑛𝑡

+𝑄 (𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓 + Δ𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓) .
(6)

One can observe that Equation 6 offers higher accuracy than Equa-
tion 5 as 𝑄 (𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓 + Δ𝑊𝑟𝑜𝑢𝑛𝑑_𝑜 𝑓 𝑓) curbs the round off error.

Full precision for the layer before Softmax. The Softmax
layer amplifies the quantization error due to its exponential opera-
tions. For simplicity, we consider a layer before Softmax with two
outputs 𝑧0 and 𝑧1. The difference in Softmax score (𝐷) between the
two outputs is:

𝐷 =

𝑒𝑥𝑝 (𝑧0)
𝑒𝑥𝑝 (𝑧0)+𝑒𝑥𝑝 (𝑧1)

𝑒𝑥𝑝 (𝑧1)
𝑒𝑥𝑝 (𝑧0)+𝑒𝑥𝑝 (𝑧1)

=
𝑒𝑥𝑝 (𝑧0)
𝑒𝑥𝑝 (𝑧1)

. (7)

Once the quantization error 𝑒𝑖 is introduced to 𝑧𝑖 , the perturbation
of output difference follows:

𝐷 ′ =
𝑒𝑥𝑝 (𝑧0 + 𝑒0)
𝑒𝑥𝑝 (𝑧1 + 𝑒1)

= 𝐷 · 𝑒𝑥𝑝 (𝑒0)
𝑒𝑥𝑝 (𝑒1)

= 𝐷 · 𝑒𝑥𝑝 (𝑒0 − 𝑒1)︸ ︷︷ ︸
Amplified error

. (8)

This analysis suggests that the exponential function applied to
(𝑒0 −𝑒1) will rapidly make the difference 𝐷 either bigger or smaller,
departing from the desired faithful 𝐷 . Therefore, we propose to use
full precision to compute the layer before the Softmax.

SC ’23, November 12–17, 2023, Denver, CO, USA Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, and Hang Liu

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Block A

Block B

Block
A

Block B

Thread

k = 32

N = 128

8

32

8

16

Tile C (register) w/
scaling factor s

Quantized Tile B
(shared mem)

Q
ua

nt
iz

ed
Ti

le
 A

(s
ha

re
d

m
em

)

M
 =

 1
28

Block C

Block C

A

B

C

Tile A

Tile B

Tile C

Figure 4: Tango GEMM with on-the-fly quantization and

scaling factor s computation.

3.3 Quantization accelerated training

GEMM with on-the-fly quantization. Figure 4 illustrates our
GEMM with on-the-fly quantization and scaling factor (i.e., s) com-
putation. Our quantized GEMM includes four steps: First, we quan-
tize while loading the tiles of input matrices from global memory
to shared memory (i.e., Tiles A and B). Note that the input ma-
trices are usually needed for backward computation. Therefore,
we store the quantized tiles back in global memory while com-
puting, eliminating the round-trip memory latency in the naive
design. Second, we store the resultant block in registers to minimize
the write latency. Third, during computation, we pack four 8-bit
integers into a 32-bit register and use one DP4A instruction for
four multiply-accumulate operations between two packed registers.
Fourth, we dequantize the resultant 32-bit integers in registers to
floating-point. We also fuse the computation of parameter 𝑠 in the
kernel for the following primitives.

We develop a data tiling strategy to hide the data access latency
behind the computations. First, when loading from global mem-
ory, we choose an appropriate tile size, i.e., 128 × 32 which is the
ideal tile size to balance the computation capability and memory
throughput on V100 GPUs. Below is our analysis: assuming the
sizes of Tiles A and B are𝑀 · 𝑘 and 𝑁 · 𝑘 , to pipeline the loading of
Tiles A and B with the computation, we hide the loading latency
by arithmetic operations, 𝑙𝑜𝑎𝑑𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝐿𝑎𝑡𝑒𝑛𝑐𝑦. We
denote that the latency of loading one FP32 value from global mem-
ory is 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑔𝑙𝑜𝑏𝑎𝑙 and the latency of performing one multiply-
accumulate operation is𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑐𝑜𝑚𝑝𝑢𝑡𝑒 .We arrive at 𝑙𝑜𝑎𝑑𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =

(𝑀 · 𝑘 + 𝑁 · 𝑘) · 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑔𝑙𝑜𝑏𝑎𝑙 , and 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = (𝑀 · 𝑁 ·
𝑘) ·𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑐𝑜𝑚𝑝𝑢𝑡𝑒 . This leads to 𝑀+𝑁

𝑀 ·𝑁 =
𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑐𝑜𝑚𝑝𝑢𝑡𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑔𝑙𝑜𝑏𝑎𝑙
. On V100

GPU, we find 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑔𝑙𝑜𝑏𝑎𝑙 ≈ 400, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ≈ 4. Without
loss of generality, we let𝑀 = 𝑁 . We hence arrive at𝑀 = 𝑁 ≈ 200.
Since the size of 𝑀 and 𝑁 should be the power of two, we find

𝑀 = 𝑁 = 128 offer the best performance. Second, at the warp level,
we let each warp load two blocks from Tiles A and B to compute
four adjacent blocks in Tile C as shown in Figure 4. We derive the
optimal block size that can hide the latency of accessing shared
memory. Particularly, in each iteration, a thread loads 32 packed
INT8 as the eight blocks colored on the right side of Figure 4. Then
the 16 DP4A instructions cover the 18 cycles latency of loading for
the next iteration.

For computation, we carefully schedule the threads to improve
the computation intensity. First, when loading and quantizing Tile
A from global memory to shared memory, we transpose the Tile
because the access is in column while Tile A is row-major in global
memory. Second, to avoid bank conflict, a warp stores Block A in
shared memory with a 16-byte offset in each column. Each warp
works on 2× 2 C blocks to reuse Block A and B. Third, we schedule
the threads as shown in the left side of Figure 4, mapping 32 threads
within a warp to block C to increase shared memory throughput.
For example, threads 0,1,2,3 access the same address in block A so
the loaded data can be broadcast to 4 threads.

Of note, there exist frameworks that can generate GEMM kernels
with efficient tiling and scheduling, but none of them can be used
to implement GEMMwith on-the-fly quantization. On the one hand,
template-based frameworks, such as AutoTVM [53] and Ansor [54],
optimize kernels by enumerating the combinatorial choices of opti-
mizations (e.g., tile layout, tile size, and parallelization). Searching
the design space is time-consuming, and the generated kernels are
not guaranteed to be optimal. On the other hand, on-the-fly quan-
tization is not supported by the existing templates. Moreover, the
kernel generated by these frameworks, e.g., triton compiler [55],
uses too many registers, resulting in unsatisfied performance.

Incidence matrix-based adaptive SPMM. Tango performs
quantization in a separate kernel for SPMM. We use quantization
to reduce the memory traffic for SPMM since quantization leads
the node and edge feature matrices to a smaller size. Unlike GEMM,
which performs sequential memory access for the input matrices,
SPMM experiences random memory accesses. In this case, per-
forming on-the-fly quantization would lead to random memory
access for input matrices of 32-bit floating-point data type. Further,
because of unpredictable access patterns, on-the-fly quantization
could potentially lead to repeated quantization of the same data.
Instead, a dedicated quantization kernel would read 32-bit input
floating-point matrices sequentially once and write the 8-bit quan-
tized matrices out, again, sequentially and once. Therefore, during
SPMM, we perform random memory access to input matrices of
8-bit as opposed to 32-bit.

Tango further introduces two SPMM variant optimizations, that
is, incidence matrix-based SPMM and adaptive SPMM to improve
the quantized training performance.

Incidence matrix-based SPMM accelerates the SPMM variant,
i.e., step 3” of Figure 1b. Particularly, this SPMM computes the gra-
dients of node features by aggregating the incoming edge features
for each node. Using node 𝑣3 as an example, as shown in Figure 5a,
because 𝑣3 contributes to the edge features for 𝑒3 and 𝑒4, its gra-
dient is the partial derivative of 𝑒3 and 𝑒4, that is, 𝜕𝑣3 = 𝜕𝑒3 + 𝜕𝑒4.
However, because DGL uses the adjacency matrix format for the
graph, shown in Figure 5a, we need three matrices for the SPMM,
that is, this graph, 𝜕𝑒 , and the node features with all “1”s.

Tango: rethinking quantization for

graph neural network training on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

v1

v0 v2

v3

e0

e4
e1

e3

e2 e0
e1

e2
e3 e4

1 1
1 1
1 1
1 1

0 0 0 0
0 0 0 0.15

e0
0
0

e1
0
0

e2
0
0

e4
-0.08
0.15

e3
0.08
0 𝜕𝐄

𝜕𝐃

(a) DGL’s step 3” of Figure 1b.

e0 e1 e2 e3 e4
v0 1
v1 1
v2 1
v3 1 1

e0
0
0

e1
0
0

e2
0
0

e4
-0.08
0.15

e3
0.08
0

0 0 0 0
0 0 0 0.15

𝜕𝐄 𝜕𝐃

(b) Tango’s incidence matrix-based step 3” of Figure 1b.

Figure 5: Incidence matrix-based SPMM.

The drawback of this design is two-fold: First, one needs to allo-
cate and access the all “1” node feature matrix which is redundant
and expensive. Second, although the operation in Figure 5a can be
formulated as an SPMM operation, it includes three inputs, which
is not supported by the state-of-the-art cuSPARSE library.

In Figure 5b, Tango formulates this 3” computation as an inci-
dence matrix-based SPMM. Particularly, the incidence matrix is a
𝑉 × 𝐸 matrix where𝑉 and 𝐸 are, respectively, the number of nodes
and edges in the graph. Each row of the incidence matrix contains
the incoming edges of each node by marking the associated entry as
1. This design allows us to compute step 3” by multiplying two ma-
trices, i.e., the incidence matrix and edge feature. Because we only
need two input matrices, Tango can now adopt high-performance
cuSPARSE SPMM kernels for step 3” , which is significantly faster
than DGL’s three matrices-based SPMM.

Kernel 4

e0
e1

e2
e3 e4

0.59 0.73 0.51 -0.65
0.76 0.73 0.79 -1.07
0.31 0.41 0.99 -0.53
0.57 0.00 0.71 -0.57

𝐇!

e0
1.00
1.00

e1
1.00
1.00

e2
1.00
1.00

e4
0.37
0.54

e3
0.63
0.46

1.00

1.00

1.00

0.63 0.37

0.59 0.73
0.76 0.73
0.31 0.41
0.57 0.00

1.00

1.00

1.00

0.46 0.54

0.51 -0.65
0.79 -1.07
0.99 -0.53
0.71 -0.57

Kernel 1

Kernel 2

0.76 0.73 0.79 -1.07
0.57 0.01 0.71 -0.57
0.76 0.73 0.79 -1.07
0.49 0.61 0.77 -0.58

0.76 0.73
0.57 0.01
0.76 0.73
0.49 0.61

0.79 -1.07
0.71 -0.57
0.79 -1.07
0.77 -0.58

=

=

e0
e1

e2
e3 e4

0.72 0.25 0.09 0.07
0.88 0.72 0.67 0.63
0.68 0.97 0.58 0.62
0.36 0.82 0.89 0.95

e0
0.87
0.05
0.49
0.53

e1
0.02
0.52
0.97
0.43

e2
0.05
0.68
0.76
0.14

e4
0.34
0.29
0.64
0.13

e3
0.38
0.93
0.79
0.84

Kernel 3Kernel 2
0.05

0.02

0.68

0.93 0.34

0.25
0.88
0.68
0.36

=

0.04
0.01
0.04
0.50

Kernel 1
0.87

0.02

0.05

0.38 0.34

0.72
0.88
0.68
0.36

=

0.77
0.01
0.04
0.50

0.77 0.04 0.33 0.33
0.01 0.43 0.86 0.41
0.04 0.49 0.51 0.09
0.50 0.51 0.44 0.14

𝐇!

(a) Two-matrix-
based SPMM

(b) Two-matrix-
based SpMV

Figure 6: Transforming three-matrix-based SPMM, e.g., step

5 in Figure 1a into a collection of: (a) two-matrix-based

SPMM and (b) two-matrix-based SpMV.

Kernel count-based adaptation. Chances are certain SPMM
computations still involve three matrices, such as step 5 in Fig-
ure 1a. In Figure 6, we demonstrate how one could transform a three-
matrix-based SPMM kernel into a collection of two-matrix-based
SPMM kernels or, to an extreme, Sparse Matrix-Vector multiplica-
tion (SpMV) kernels. Once that transformation is completed, one
could directly rely on cuSPARSE to perform each two-matrix-based

SPMM or SpMV. Note, we prefer cuSPARSE over DGL primitives
because our evaluation shows that a single cuSPARSE SPMM kernel
is significantly faster than DGL’s native two-matrix-based SPMM
across various configurations.

However, the benefits brought by cuSPARSE kernels diminish
along with the increment of the number of kernels, as kernel invo-
cation cost soars when too many kernels are launched. In summary,
neither DGL nor transformed cuSPARSE bests the other across all
configurations. We hence adaptively leverage these two solutions
to achieve the best performance of both worlds.

Figure 6a depicts the SPMM with both edge and node features as
matrices. In this design, the first head of the node feature is scaled
by the first element of the edge feature and similarly for the second
head. We can use multiple optimized cuSPARSE SPMM kernels to
replace the native kernel used in DGL. In this case, the two heads
can be finished by two SPMM kernels. Figure 6b assumes we have
four heads in step 5 of Figure 6. In this case, we arrive at four
SpMV kernels for the original three-matrix-based SPMM.

SDDMMwith on-the-fly dequantization. Similar to our SPMM
design, we first perform sequential memory access to quantize
the input matrices. During SDDMM, we perform random memory
access on those quantized matrices of smaller sizes. Briefly, the
existing SDDMM performs one round of random access on full
precision matrices. In contrast, Tango performs one round of se-
quential access on full precision matrices and one round of random
access to the low precision matrices. This will lead Tango to have a
shorter turnaround time. Since SDDMM might perform addition or
subtraction operations, one cannot directly compute the quantized
values. This leads to our SDDMM with on-the-fly dequantization.

We use step 3 of Figure 1a to explain the reason. This SD-
DMM computes the edge feature by E[𝑖] [𝑗] = S[𝑣𝑖] + D[𝑣 𝑗]. As-
suming the scaling factor 𝑠 for S and D are, respectively, 𝑠S and
𝑠D. The addition in quantized format should be S[𝑣𝑖] + D[𝑣 𝑗] ≈
𝑠S · S𝑄𝑢𝑎𝑛𝑡 [𝑣𝑖] + 𝑠D · D𝑄𝑢𝑎𝑛𝑡 [𝑣 𝑗]. Because 𝑠S and 𝑠D are often not
equal, one cannot directly add the quantized values S𝑄𝑢𝑎𝑛𝑡 [𝑣𝑖] and
D𝑄𝑢𝑎𝑛𝑡 [𝑣 𝑗]. Therefore, Tango loads the quantized data to enjoy
reduced memory traffic, subsequently on-the-fly dequantize the
loaded values for addition/subtraction computation.

If SDDMM performs multiplication and division, we can conduct
SDDMM directly on the quantized value. Using step 5” of Fig-
ure 1b as an example, one needs to compute 𝜕𝜶 [𝑒0] = 𝜕H(𝑙) [𝑣0] ·
H′[𝑣1]. In this case, assuming the scaling factor of 𝜕H(𝑙) [𝑣0] and
H′[𝑣1] are 𝑠0 and 𝑠1. The computation can be approximated as
𝜕𝜶 [𝑒0] ≈ (𝑠0 · 𝜕H(𝑙) [𝑣0]) · (𝑠1 · H′[𝑣1]). We can further arrive at
𝜕𝜶 [𝑒0] ≈ (𝑠0 ·𝑠1) ·𝜕H(𝑙) [𝑣0] ·H′[𝑣1]. This allows Tango to perform
quantized multiplication directly. Division can also directly work
on the quantized values.

Inter-primitive optimization. Noticing that the follow-up
operators can reuse some quantized tensors, Tango caches these
quantized tensors to reduce the quantization overhead. In general,
there exist two caching opportunities: (1) caching forward pass
for backward, (2) caching prior operators for subsequent operators.
Tango develops a detection algorithm that runs on the computation
graphs to automatically derive these reuse cases.

First, the backward computation can reuse the quantized tensors
from the forward pass. For example, the GEMMof step 1 in Figure 1

SC ’23, November 12–17, 2023, Denver, CO, USA Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, and Hang Liu

has the forward computation H
′ = H

(𝑙−1) ·W. The corresponding
backward step contains the gradient computation for weight, that
is, 𝜕W = H

(𝑙−1) · 𝜕H′𝑇 , and the gradient computation of node
features, i.e., 𝜕H(𝑙−1) = 𝜕H′ ·W𝑇 , as shown in step 1’ in Figure 1b.
Clearly, the quantized matrices H(𝑙−1) and W are used in both
forward and backward computations. We thus save the quantized
input H(𝑙−1) and W during the forward pass for the backward
pass to avoid repeated quantization. Second, when two operators
share the same tensor as input, we can cache the quantized tensor
from the former operator and use it for the latter. For example, in
Figure 1b, the SPMM in step 5’ and SDDMM in 5” both need the
quantized 𝜕H(𝑙) . This way, we cache the quantized input tensor.
We also intentionally schedule the computation orders such that
the cached tensors can be reused.

We derive the caching opportunity on the computation graph,
i.e., Figure 1a as follows. The computation graph consists of tensors
as nodes and operators as edges. For nodes with more than one out
edge, we can quantize once for multiple operators. For example,
the tensor 𝜕H(𝑙)

Quant in Figure 1b has two operators as out-edges, so
we cache this tensor. Then we reverse the edges in the computation
graph for the backward pass. In this backpropagation graph, we
will check if the to-be-quantized tensors are already quantized in
the forward graph in order to facilitate quantization sharing.

Quantization overhead vs. benefit analysis. While quantiza-
tion helps reduce computation and data movement, it also brings
overheads. Mainly, quantization introduces two types of overheads:
parameter computing and data type casting. First, the parameter 𝑠 in
Equation 1 is derived by reducing the elements with the maximum
absolute value. For a 𝑁 × 𝑁 matrix, the reduction needs 𝑁 2 opera-
tions to derive the absolute maximum values. Second, quantizing
or dequantizing an element requires two operations: multiply and
data type casting. Therefore, the quantization before the primitive
performs 4𝑁 2 floating-point operations.

For GEMM with the input matrices at sizes of𝑀 ×𝐾 and 𝐾 × 𝑁 ,
we perform 4𝐾 (𝑀 + 𝑁) and 2𝑀𝑁 operations for quantization and
dequantization, respectively. For GEMM, we reduce the number
of multiply-accumulate instructions from 𝑀𝑁𝐾 to 𝑀𝑁𝐾

4 , which
is often significantly higher than the overheads. Sparse primitives
quantize the node and edge feature matrices. We assume 𝐷 as
the size of features. Given a graph with 𝑁 nodes and 𝐸 edges, in
SPMM, the node and edge features require 4𝐷 (𝑁 +𝐸) operations for
quantization. Later, only the resultant node features are dequantized
with 2𝑁𝐷 operations. Quantization in SDDMM performs 4𝑁𝐷
operations for node features. Dequantizing resultant edge features
needs 2𝐸𝐷 operations. Regarding the benefits of sparse primitives,
sparse primitives enjoy a better cache access pattern brought by
quantization which reduces the sizes of the input matrices.

4 EXPERIMENTS

4.1 Experimental setup

Datasets.We conduct experiments on five graph datasets as shown
in Table 1. The obgn-arxiv [56] and Pubmed [57] are citation graphs
whose nodes represent papers and edges are the citations. The task
is to predict the categories of papers. The ogbn-products [58] dataset
depicts an product co-purchasing network, where nodes represent

Dataset ogbn-arxiv ogbn-products Pubmed DBLP Amazon
Nodes 169,343 2,449,029 19,717 317,080 410,236
Edges 1,166,243 61,859,140 88,651 1,049,866 3,356,824
Task NC NC NC LP LP

Table 1: Graph datasets. NC denotes “node classification”,

and LP denotes “link prediction”.

products sold in Amazon, and edges between two products indicate
that they are purchased together. The task is to predict the category
of a product. The DBLP dataset is a co-authorship network where
nodes are authors and edges are co-authorship [59]. The Amazon

dataset contains products as the nodes and edges represent co-
purchase [60]. The tasks of DBLP and Amazon are to predict if
a link exists between two nodes. We add the reverse edges for
the directed graphs and self-connects edges to ensure the SPMM
operation works for every node.

Models. We evaluate GCN [12] and GAT [22] from the example
implementations of DGL and the models are trained with the same
number of epochs and hyperparameter settings. Both models use
the hidden size of 128 and two GNN layers; GAT has four attention
heads. For node classification, the model generates the node embed-
ding as the set probabilities of each category. For link prediction,
we perform dot-product between two node embeddings as the score
of edge existence. The training epochs for Pubmed, ogbn-arxiv, and
ogbn-products are 30, 500, and 150.

Implementation details. For ease of use, we integrate Tango
in DGL. Therefore, all the models on DGL can enjoy the performance

benefits brought from Tango without any changes. We provide our
optimized quantized CUDA kernels to replace the corresponding
primitives in DGL. DGL employs the GEMM function from the
cuBLAS library and sources its sparse primitives either directly
from cuSPARSE [61] or through its own implementations. DGL’s
interface is designed in Python and its primitives are integrated
as PyTorch functions. To ensure a fair comparison, the kernels
of Tango are also invoked via PyTorch’s auto-differential engine
during training [62]. Furthermore, DGL supports multiple graph
data structure formats, and Tango leverages DGL’s heuristics to
determine the most efficient format for its primitives.

Evaluation platforms.We use Python 3.6.10 and CUDA 11.7
on six V100S GPUs and Intel(R) Xeon(R) Gold 6244 @ 3.60GHz
CPU. The model is trained with PyTorch 1.13.0 and DGL 0.8. We
also have access to a single A100 GPU for a limited time. We use
that to compare GEMM on INT8 tensor core vs FP16 tensor core.

4.2 Tango vs. state-of-the-art

We compare Tango with DGL [63] and EXACT [32]. DGL trains
the model in full precision, and EXACT trains the model with
quantized tensors. EXACT aims to save memory by quantizing
the saved tensors, and it has no optimization in computation. We
set EXACT to use 8-bit quantization. Of note, the GNN models
are implemented through PyTorch, which experiences significant
high-level language overheads when calling Tango primitives. As a
result, we observe significantly smaller model-level speedups than
the primitive-level comparisons (detailed in Section 4.3).

Training speed.We evaluate the training speedup of Tango on
GCN and GAT models. We train each model 5 times and report the
average elapsed time achieving the same accuracy as the baseline,

Tango: rethinking quantization for

graph neural network training on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

10 20 30

Epochs

0.25

0.50

0.75

A
cc

u
ra

cy

Baseline

Tango

Test1

Test2

(a) Pubmed GCN.

0 200 400

Epochs

0.25

0.50

0.75

(b) ogbn-arxiv GCN.

0 20 40 60 80 100120140

Epochs

0.25

0.50

0.75

(c) ogbn-products GCN.

0 20 40 60 80 100

Epochs

0.5

0.6

0.7

0.8

0.9

(d) DBLP GCN.

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

(e) Amazon GCN.

10 20 30

Epochs

0.50

0.75

A
cc

u
ra

cy

(f) Pubmed GAT.

0 200 400

Epochs

0.00

0.25

0.50

0.75

(g) ogbn-arxiv GAT.

0 20 40 60 80 100120140

Epochs

0.00

0.25

0.50

0.75

(h) ogbn-products GAT.

0 20 40 60 80 100

Epochs

0.5

0.6

0.7

0.8

0.9

(i) DBLP GAT.

0 20 40 60 80 100

Epochs

0.5

0.6

0.7

0.8

0.9

(j) Amazon GAT.

Figure 7: The convergence analysis of GCN and GAT with Tango. Test1 denotes Tango with quantized layer before Softmax.

Test2 denotes Tango using nearest rounding instead of stochastic rounding.

including the forward and backward computations. As shown in
Figure 8, Tango has 1.2× and 1.5× speedup on average on GCN
and GATmodels compared with DGL, respectively. The GAT model
enjoys more benefits because it contains more quantized primitives
than GCN. Further, larger graphs have more speedup for the GCN
model, except the DBLP dataset, which has the smallest average
degree among the five graphs. Overall, Tango achieves an average
speedup of 2.9× on GCN and 4.1× on GAT compared with EXACT.
The key takeaway is that applying quantizationwithout appropriate
optimizations will lead to a significant slowdown (e.g., EXACT).

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0.0
0.5
1.0
1.5
2.0

S
p

ee
d

u
p

GCN: TANGO GAT: TANGO GCN: EXACT GAT: EXACT

Figure 8: The speedup of training the GNN models with

Tango and EXACT compared with DGL.

Accuracy study. Figure 7 studies the accuracy impact of the
techniques in Section 3.2 for GCN and GAT. In particular, we evalu-
ate Tango, Tangowith quantized layer before Softmax (Test1), and
Tango without stochastic rounding (Test2). For clarification, the
training crashes without quantization-aware matrix multiplication
and full precision weight update. The baseline models are trained
in FP32 with the same number of epochs as the quantized training.

Overall, Tango could achieve >99% accuracy of the full precision
training with the same number of epochs. When quantizing the
layer before Softmax (Test1), the models show noticeable accuracy
loss except for the DBLP dataset, GCN model on Pubmed, and GAT
model on ogbn-arxiv. The average relative accuracy drop is 9.7%.
Despite the similar final accuracy, GAT on Pubmed and GCN on
ogbn-arxiv converge slower than the baseline by 18 and 35 epochs,
respectively. For quantization without stochastic rounding (Test2),
we observe for GCN on Pubmed and both models on DBLP and
Amazon, the quantization error changes the optimization direction
in some epochs. Thus the models take more epochs to recover.

Moreover, the models on ogbn-arxiv and ogbn-products suffer from
significant accuracy drops. As shown in Figure 7a, although the
model can achieve convergence, the training process shows more
instability than that with stochastic rounding.

2 3 4 5 6

(a) GCN

1.0

1.5

2.0

S
p

ee
d

u
p

2 3 4 5 6

(b) GAT

1.0

1.5

2.0
ogbn-arxiv ogbn-products Pubmed DBLP Amazon

Figure 9: Tango’s impact on multi-GPU training. The X-axis

is the number of GPUs.

Multi-GPU training. Figure 9 studies Tango’s impact on multi-
GPU training. We directly adopt DGL’s mini-batch multi-GPU train-
ing. That is, each GPU trains the model on a batch of sampled sub-
graphs per epoch. Then, the gradients of all GPUs are updated by
an all-reduce operation. We compare the training speed between full

precision baseline and Tango using the same number of GPUs.

Tango achieves speedup over the full precision baseline via
transferring the quantized node features and gradients. Since we
perform stochastic rounding-based quantization, this process will
introduce nontrivial turnaround time. In Tango, we overlap the
feature quantization with the subgraph sampling. The overall trend
is that more GPUs would enjoy higher speedup as the Peripheral
Component Interconnect Express (PCI-E) congestion is better al-
leviated by our quantization. Particularly, the speedup increases
from 1.1× to 1.5×, and 1.2× to 1.7× from two to six GPUs on GCN
and GAT, respectively.

4.3 Turnaround time analysis

Caching the quantized tensors. Figure 10 shows the performance
of caching the quantized tensor in forward for backward reuse. We
test the GEMM primitive on different datasets. We test with two
hidden sizes, 𝐷 = 128 and 𝐷 = 256. The result shows 1.7× and 1.6×

SC ’23, November 12–17, 2023, Denver, CO, USA Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, and Hang Liu

on average when 𝐷 = 128 and 𝐷 = 256, respectively. The saving
is related to the data size; smaller graphs, such as Pubmed, enjoy
more time savings.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0
1
2
3

S
p

ee
d

u
p

128 256

Figure 10: The speedup of caching the quantized tensors.

GEMM. Figure 11a shows the speedup of our quantized GEMM
over cuBLAS GEMM with the hidden size 𝐷 = 256 and 𝐷 = 512. Of
note, we include the quantization cost in Tango GEMM time. Our
quantized GEMM primitive has 2.2× and 2.5× speedup on average
when 𝐷 = 256 and 𝐷 = 512, respectively. The trend also suggests
that quantization offers more speedup on the GEMM operator when
the hidden size increases. In addition, we also compare our quan-
tized INT8 GEMM with FP16 GEMM on A100 Tensor Core GPUs.
Figure 11b shows that our quantized GEMM primitives have 1.9×
for 𝐷 = 256 and 1.8× for 𝐷 = 512. Since both baseline and Tango
use Tensor Core, the speedup over baseline is smaller than using
CUDA core because the performance difference of computing in
INT8 and FP16 is 2× on A100 tensor cores. Further, we observe a
speedup drop for a bigger 𝐷 because our quantization needs to scan
through a bigger tensor to extract the scaling factor 𝑠 .

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0
1
2
3

Sp
ee

du
p

D=256 D=512

(a) CUDA core (V100S).

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0

1

2

Sp
ee

du
p

(b) Tensor core (A100).

Figure 11: Tango GEMM vs cuBLAS GEMM.

Figure 12 shows the profiling results of quantized GEMM. We
profile the ratio of achieved computation throughput (operation/s),
memory throughput (GB/s), Instruction Per Cycle (IPC), and the
number of instructions compared with cuBLAS FP32 GEMM [64].
The average computation and memory throughput ratios are 2.1×
and 2.2×, respectively. Memory throughput is higher because our
quantized GEMM writes the quantized matrix out. However, since
GEMM is computation-intensive, our increased computation through-
put dominates the performance impacts. Our further investigation
into IPC and # of instructions in Figure 12b explains how Tango
doubles the computation throughput. Our average IPC is ∼70% of
the baseline, with the instruction number reduced to ∼31%. To-
gether, we can roughly double the throughput of the baseline.

SPMM. Figure 13a shows the performance of using incidence
matrix SPMM for edge aggregation compared with DGL SPMM
kernels. We set the edge features size ranging from 4 to 20. All

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0
1
2

R
at

io

Computation Memory

(a) Throughput.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0

0.25
0.5

0.75

R
at

io

IPC Instructions

(b) Instruction.

Figure 12: The hardware profiling of quantized GEMM.

Dataset ogbn-arxiv ogbn-products Pubmed DBLP Amazon
Ours (GB/s) 344.06 491.72 353.38 331.57 342.93

Baseline (GB/s) 41.26 244.22 131.89 297.67 105.88
Table 2: The achieved memory throughput using incidence-

based SPMM and DGL baseline.

dataset has an average 2.1× speedup. The ogbn-arxiv dataset has the
best speedup of 5.5× on average because of the poor performance
of its baseline kernel. That is, the randomness of the incidence
matrix is much lower than that of the adjacency matrix from the
baseline. Table 2 shows the achieved memory throughput using
our incidence-based SPMM and baseline when the feature size is 16.
The irregular access for the baseline on the ogbn-arxiv dataset leads
to low memory throughput. Using the incidence matrix alleviates
the irregularity because the edges incidents to a node are stored
adjacent in memory.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0
1

3

5

S
p

ee
d

u
p

D=4 D=8 D=12 D=16 D=20

(a) Incidence matrix optimization.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon

1

2

S
p

ee
d

u
p

(2 × 128) (4 × 128) (2 × 256) (4 × 256)

(b) Multi-SPMM optimization.

Figure 13: Tango SPMM optimizations.

Figure 13b shows the performance of using multiple SPMM’s
with a small edge feature dimension in a multi-head graph attention
operation compared with DGL SPMM kernels. We set the node
feature dimension as (𝐻 × 𝐷), and the edge features dimension as
(𝐻 × 1), where 𝐻 represents the number of heads and 𝐷 represents
the hidden size of each head. Ours has 2.1×, 1.9×, 2.0×, and 1.8×
speedup over DGL’s primitive on average respectively for (2× 128),
(4 × 128), (2 × 256), and (4 × 256). Increasing the number of heads
leads to a smaller speedup when the hidden size is fixed because of
the increased overhead of more kernel launches. The hidden size
has little impact on speedup with the same head number.

Figure 14 shows the performance of using multiple cuSPARSE
SpMV with a large edge feature dimension on ogbn-arxiv graph.

Tango: rethinking quantization for

graph neural network training on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

2 4 6 8 10 12

Size

2.5

5.0

7.5
T

im
e

(m
s)

Baseline Ours

Figure 14: The performance of using multiple cuSPARSE

SPMV with high edge feature dimension.

We test the feature size ranging from 2 to 12. When the size is
smaller than 6, ours has a 1.6× speedup on average over DGL’s
implementation. The result shows the increased turnaround time
as the number of kernels increases.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0

1

2

S
p

ee
d

u
p

SDDMM add SDDMM dot

Figure 15: The performance of SDDMM operators.

SDDMM. Figure 15 shows the performance of quantized SD-
DMM compared with DGL SDDMM kernels. We evaluate two SD-
DMM variants, including the row-wise dot-product (step 5” in
Figure 1b) and element-wise addition (step 3 in Figure 1a), denoted
as SDDMM dot and SDDMM add. The node features are matrices
with the size of (4, 64). Our SDDMM add and SDDMM dot achieves
1.9× and 1.6× speedups over DGL, respectively.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0
1
2
3
4

S
p

ee
d

u
p SDDMM add SDDMM dot

(a) INT4 SDDMM.

ogbn-arxiv ogbn-products Pubmed DBLP Amazon
0

4

8

12

S
p

ee
d

u
p

D=256 (8b) D=512 (8b) D=256 (4b) D=512 (4b)

(b) INT4 GEMM and INT8 GEMM.

Figure 16: The turnaround time impacts by varying # of bits.

4.4 Speed impact for # of quantization bits

Because neither cuSPARSE nor DGL provides SPMM kernels of
INT4, this section only studies INT4 GEMM and SDDMM which
are implemented by Tango. Figure 16a shows the SDDMM perfor-
mance using INT4 compared with full precision DGL primitives.
The addition and dot-product kernels achieve, on average, 3.3× and
1.8×, respectively. Dense graphs like ogbn-arxiv and ogbn-products

enjoy more benefits from reduced memory traffic because the node
embeddings are more likely to be reused by cache hit.

Figure 16b shows the GEMM performance using INT8, and INT4
compared with cuBLAS. Note that we run the tests on an A100 GPU
with INT4 hardware support. Using INT8 and INT4 leads to 5.4×
and 6.2× average speedup when hidden size 𝐷 = 256. For 𝐷 = 512,
the average speedup is 8.1× and 10.1×, respectively. Using fewer
bits shows marginal improvement because the sub-byte access
under-utilizes the shared memory bandwidth.

5 RELATEDWORK

Recent years have seen a surge of efforts on GNN [63, 65–78]. For
a comprehensive study about the history and advancements in
quantization for DNNs and GNNs, we refer the readers to two
surveys [79, 80]. In addition to the related work in Section 1, this
section further discusses GNN primitives and inference.

GNN operator optimization projects often focus on improving
the SPMM and SDDMM kernels in GNN. GE-SpMM [81] and DA-
SpMM [82] propose optimizations for implementing SPMM on GPU
for GNN workloads. QGTC [83] accelerates quantized GNN oper-
ations using Tensor Cores on GPU by representing the adjacency
matrix as a 1-bit sparse matrix and quantizing node features in any
bits, which can be computed using the 1-bit computation function
on Ampere Tensor Cores. GE-SpMM, QGTC, and DA-SpMM do not
support models with multi-edge features like GAT, while Tango
revamps SPMM to support suchmodels. In addition,Tango also sup-
ports quantized GEMM and SDDMM. FeatGraph [84] uses tensor
compilers, providing a flexible programming interface to generate
SPMM and SDDMM for various GNN operations. FeatGraph aims
to exploit parallelism for customized operations between features.
However, FeatGraph does not support quantization.

GNN inference quantization has received significant atten-
tions recently [35, 83, 85–87]. Unfortunately, none of these can
achieve a shorter turnaround time for training than not quantized
GNN models. Particularly, [87] quantizes the GNN into binary with
knowledge distillation to reduce accuracy loss. Since knowledge
distillation needs to train a teacher model and a student model,
the training time increases. SGQuant [86] is a quantization scheme
aiming to reduce memory consumption. It assigns different bits
to embeddings and attention tensors on different levels, but the
mismatch of datatype incurs extra conversion overhead. In con-
trast, Tango introduces a variety of framework and primitive-level
system optimizations, leading to a shorter turnaround time during
quantized GNN training.

6 CONCLUSION

Tango identifies both the challenges and opportunities brought by
quantization to GNN training. Particularly, Tango makes the fol-
lowing three major contributions. First, Tango introduces various
lightweight rules to maintain the accuracy for quantized GNN train-
ing. Second, we design and implement quantization-aware primi-
tives and inter-primitive optimizations to reduce the turnaround
time for quantized GNN training. Third, we integrate Tango into
DGL and evaluate it across a variety of GNN models and datasets
to demonstrate the superior performance of Tango.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their helpful
suggestions. This work was in part supported by the NSF CRII
Award No. 2331536, CAREER Award No. 2326141, and NSF 2212370,
2319880, 2328948, 2319975, 2331301 and Semiconductor Research
Corporation (SRC) Artificial Intelligence Hardware program. Any
opinions, findings conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the funding agencies.

SC ’23, November 12–17, 2023, Denver, CO, USA Shiyang Chen, Da Zheng, Caiwen Ding, Chengying Huan, Yuede Ji, and Hang Liu

REFERENCES

[1] Madhav Marathe and Anil Kumar S Vullikanti. Computational Epidemiology.
Communications of the ACM, 56(7):88–96, 2013.

[2] Guo Zhang, Hao He, and Dina Katabi. Circuit-GNN: Graph neural networks for
distributed circuit design. In International Conference on Machine Learning, pages
7364–7373. PMLR, 2019.

[3] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural
Network-Based Graph Embedding for Cross-Platform Binary Code Similarity
Detection. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security, pages 363–376, 2017.
[4] Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen

Ding, Xiaoye S Li, and Hang Liu. Dr. Top-k: Delegate-Centric Top-k on GPUs.
In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–14, 2021.
[5] Kaustav Banerjee, Shukri J Souri, Pawan Kapur, and Krishna C Saraswat. 3-

D ICs: A Novel Chip Design for Improving Deep-submicrometer Interconnect
Performance and Systems-on-Chip Integration. Proceedings of the IEEE, 89(5):602–
633, 2001.

[6] Qihang Chen, Boyu Tian, and Mingyu Gao. FINGERS: Exploiting Fine-Grained
Parallelism in Graph Mining Accelerators. In Proceedings of the 27th ACM In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS 2022, page 43–55, New York, NY, USA, 2022.
[7] Shiyang Chen, Shaoyi Huang, Santosh Pandey, Bingbing Li, Guang R Gao, Long

Zheng, Caiwen Ding, and Hang Liu. ET: Re-thinking Self-Attention for Trans-
former Models on GPUs. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–18, 2021.
[8] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. XBFS: eXploring runtime

optimizations for breadth-first search on GPUs. In Proceedings of the 28th In-

ternational symposium on high-performance parallel and distributed computing,
pages 121–131, 2019.

[9] Hang Liu and H Howie Huang. {SIMD-X}: Programming and processing of
graph algorithms on {GPUs}. In 2019 USENIX Annual Technical Conference

(USENIX ATC 19), pages 411–428, 2019.
[10] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang

Chen, Christos Kozyrakis, and Xuehai Qian. GraphP: Reducing Communication
for PIM-Based Graph Processing with Efficient Data Partition. In 2018 IEEE

International Symposium on High Performance Computer Architecture (HPCA),
pages 544–557, 2018.

[11] Remi Lam, Alvaro Sanchez-Gonzalez, MatthewWillson, PeterWirnsberger, Meire
Fortunato, Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach
Eaton-Rosen, et al. GraphCast: Learning skillful medium-range global weather
forecasting. arXiv preprint arXiv:2212.12794, 2022.

[12] Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. In International Conference on Learning Representations,
2016.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. Advances in Neural Information Processing System, 30, 2017.

[14] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. Translating embeddings for modeling multi-relational data. In
Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013.

[15] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. Dgl-ke: Training knowledge graph embed-
dings at scale. In Proceedings of the 43rd International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 739–748, 2020.
[16] Nidhi Rastogi, Sharmishtha Dutta, Christian Ryan, Mohammad Zaki, Alex Gittens,

and Charu C. Aggarwal. Information Prediction using Knowledge Graphs for
Contextual Malware Threat Intelligence. CoRR, abs/2102.05571, 2021.

[17] Qingyu Xu, Feng Zhang, Mingde Zhang, Jidong Zhai, Bingsheng He, Cheng
Yang, Shuhao Zhang, Jiazao Lin, Haidi Liu, and Xiaoyong Du. Payment behavior
prediction on shared parking lots with TR-GCN. The VLDB Journal, pages 1–24,
2022.

[18] Seung-Hwan Lim, Junghoon Chae, Guojing Cong, Drahomira Herrmannova,
Robert M Patton, Ramakrishnan Kannan, and Thomas E Potok. Visual Under-
standing of COVID-19 Knowledge Graph for Predictive Analysis. In 2021 IEEE

International Conference on Big Data (Big Data), pages 4381–4386. IEEE, 2021.
[19] Yifei Wang, Shiyang Chen, Guobin Chen, Ethan Shurberg, Hang Liu, and Pengyu

Hong. Motif-Based Graph Representation Learning with Application to Chemical
Molecules. Informatics, 10(1), 2023.

[20] Jaeyeon Won, Jeyeon Si, Sam Son, Tae Jun Ham, and Jae W Lee. ULPPACK:
Fast Sub-8-bit Matrix Multiply on Commodity SIMD Hardware. Proceedings of
Machine Learning and Systems, 4:52–63, 2022.

[21] Minjia Zhang, Wenhan Wang, and Yuxiong He. GraSP: Optimizing Graph-Based
Nearest Neighbor Search with Subgraph Sampling and Pruning. In Proceedings

of the Fifteenth ACM International Conference on Web Search and Data Mining,
WSDM ’22, page 1395–1405, New York, NY, USA, 2022. ACM.

[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph Attention Networks. In International Conference

on Learning Representations, 2018.
[23] Nvidia. Tensor Cores. Retrieved from https://developer.nvidia.com/tensor-cores.

Accessed: 2022, Nov 26.
[24] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash

Gopalakrishnan. Training Deep Neural Networks with 8-bit Floating Point
Numbers. Advances in Neural Information Processing Systems, 31, 2018.

[25] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William
Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof, et al. Flexpoint:
An Adaptive Numerical Format for Efficient Training of Deep Neural Networks.
Advances in Neural Information Processing Systems, 30, 2017.

[26] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar,
Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,
Bharat Kaul, Evangelos Georganas, et al. Mixed Precision Training of Convolu-
tional Neural Networks using Integer Operations. In International Conference on

Learning Representations, 2018.
[27] Charbel Sakr and Naresh Shanbhag. Per-Tensor Fixed-Point Quantization of the

Back-Propagation Algorithm. In International Conference on Learning Represen-

tations, 2018.
[28] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon

Wilson, and Chris De Sa. SWALP: Stochastic Weight Averaging in Low Precision
Training. In International Conference on Machine Learning, pages 7015–7024.
PMLR, 2019.

[29] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li,
Xiuqi Yang, and Junjie Yan. Towards Unified INT8 Training for Convolutional
Neural Network. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 1969–1979, 2020.
[30] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael

Mahoney, and Joseph Gonzalez. ActNN: Reducing Training Memory Footprint
via 2-Bit Activation Compressed Training. In Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning

Research, pages 1803–1813. PMLR, 18–24 Jul 2021.
[31] Huiyuan Chen, Xiaoting Li, Kaixiong Zhou, Xia Hu, Chin-Chia Michael Yeh,

Yan Zheng, and Hao Yang. TinyKG: Memory-Efficient Training Framework for
Knowledge Graph Neural Recommender Systems. In Proceedings of the 16th ACM

Conference on Recommender Systems, pages 257–267, 2022.
[32] Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. EXACT:

Scalable graph neural networks training via extreme activation compression. In
International Conference on Learning Representations, 2022.

[33] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han,
Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, et al. GACT: Activation Com-
pressed Training for Generic Network Architectures. International Conference on
Machine Learning, 2022.

[34] R David Evans and Tor Aamodt. AC-GC: Lossy activation compression with
guaranteed convergence. Advances in Neural Information Processing Systems,
34:27434–27448, 2021.

[35] ShyamAnil Tailor, Javier Fernandez-Marques, and Nicholas Donald Lane. Degree-
Quant: Quantization-Aware Training for Graph Neural Networks. In International
Conference on Learning Representations, 2021.

[36] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quan-
tized 8bit BERT. In 2019 Fifth Workshop on Energy Efficient Machine Learning and

Cognitive Computing-NeurIPS Edition (EMC2-NIPS), pages 36–39. IEEE, 2019.
[37] Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, Vivek Menon, Sun Choi,

Kushal Datta, and Vikram Saletore. Efficient 8-Bit Quantization of Transformer
Neural Machine Language Translation Model. arXiv preprint arXiv:1906.00532,
2019.

[38] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural Network Quantization
with Adaptive Bit-Widths. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 2146–2156, 2020.
[39] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.

HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
293–302, 2019.

[40] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. Backpropagation for Energy-Efficient Neuromorphic
Computing. Advances in Neural Information Processing Systems, 28, 2015.

[41] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. Ad-
vances in Neural Information Processing Systems, 28, 2015.

[42] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training
of neural networks for efficient integer-arithmetic-only inference. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[43] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and MaxWelling. Modeling Relational Data with Graph Convolutional Net-
works. In The Semantic Web, pages 593–607, Cham, 2018. Springer International

https://developer.nvidia.com/tensor-cores

Tango: rethinking quantization for

graph neural network training on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

Publishing.
[44] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. A survey of

heterogeneous information network analysis. IEEE Transactions on Knowledge

and Data Engineering, 29(1):17–37, 2017.
[45] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous Graph

Transformer. In Proceedings of The Web Conference 2020, pages 2704–2710, 2020.
[46] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

Deep Learning with Limited Numerical Precision. In International Conference on

Machine Learning, pages 1737–1746. PMLR, 2015.
[47] CUDA Nvidia. cuRAND library programming guide. NVIDIA Corporation. edit, 1,

2022.
[48] David Blackman and Sebastiano Vigna. Scrambled Linear PseudorandomNumber

Generators. ACM Transactions on Mathematical Software (TOMS), 47(4):1–32,
2021.

[49] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The
Surprising Power of Graph Neural Networks with Random Node Initialization. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,

IJCAI-21, pages 2112–2118, 8 2021.
[50] Hyunsun Park, Jun Haeng Lee, Youngmin Oh, Sangwon Ha, and Seungwon

Lee. Training Deep Neural Network in Limited Precision. arXiv preprint

arXiv:1810.05486, 2018.
[51] Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu. FxpNet: Training a deep

convolutional neural network in fixed-point representation. In 2017 International

Joint Conference on Neural Networks (IJCNN), pages 2494–2501. IEEE, 2017.
[52] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients. arXiv preprint arXiv:1606.06160, 2016.

[53] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor
programs. Advances in Neural Information Processing Systems, 31, 2018.

[54] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-
Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
High-performance Tensor Programs for Deep Learning. In Proceedings of the

14th USENIX Conference on Operating Systems Design and Implementation, pages
863–879, 2020.

[55] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: An Intermediate
Language and Compiler for Tiled Neural Network Computations. In Proceed-

ings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and

Programming Languages, pages 10–19, 2019.
[56] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,

and Anshul Kanakia. Microsoft Academic Graph: When experts are not enough.
Quantitative Science Studies, 1(1):396–413, 2020.

[57] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-
driven Active Surveying for Collective Classification. In 10th International Work-

shop on Mining and Learning with Graphs, volume 8, page 1, 2012.
[58] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The

Extreme Classification Repository: Multi-label Datasets and code, 2016.
[59] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Communities

based on Ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.
[60] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The Dynamics of

Viral Marketing. ACM Transactions on the Web (TWEB), 1(1):5–es, 2007.
[61] M Naumov, LS Chien, P Vandermersch, and U Kapasi. Cusparse library. In GPU

Technology Conference (GTC), 2010.
[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
Torch: An imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems, pages 8024–8035, 2019.
[63] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. Deep Graph Library: A Graph-Centric, Highly-Performant
Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315, 2019.

[64] CUDA Nvidia. cuBLAS library programming guide. NVIDIA Corporation. edit, 1,
2007.

[65] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K. Ahmed, and
Sasikanth Avancha. DistGNN: Scalable Distributed Training for Large-Scale
Graph Neural Networks. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY,
USA, 2021. ACM.

[66] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. C-SAW: A
framework for graph sampling and random walk on GPUs. In SC20: International

Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–15. IEEE, 2020.

[67] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. GNNLab: A Factored System for Sample-Based
GNN Training over GPUs. In Proceedings of the Seventeenth European Conference

on Computer Systems, EuroSys ’22, page 417–434, New York, NY, USA, 2022. ACM.

[68] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng
Liu. TileSpGEMM: A Tiled Algorithm for Parallel Sparse General Matrix-Matrix
Multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’22, page 90–106, New
York, NY, USA, 2022. ACM.

[69] Jesun Sahariar Firoz, Ang Li, Jiajia Li, and Kevin Barker. On the Feasibility of
Using Reduced-Precision Tensor Core Operations for Graph Analytics. In 2020

IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 2020.
[70] Jou-An Chen, Hsin-Hsuan Sung, Xipeng Shen, Nathan Tallent, Kevin Barker,

and Ang Li. Bit-GraphBLAS: Bit-Level Optimizations of Matrix-Centric Graph
Processing on GPU, 2022.

[71] Zhaoxia Deng, Jongsoo Park, Ping Tak Peter Tang, Haixin Liu, Jie Yang, Hector
Yuen, Jianyu Huang, Daya Khudia, Xiaohan Wei, Ellie Wen, et al. Low-Precision
Hardware Architectures Meet Recommendation Model Inference at Scale. IEEE
Micro, 41(5):93–100, 2021.

[72] Kazem Cheshmi, Michelle Mills Strout, and Maryam Mehri Dehnavi. Optimizing
Sparse Computations Jointly. In Proceedings of the 27th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 459–460, 2022.
[73] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. GNNAutoScale:

Scalable and Expressive Graph Neural Networks via Historical Embeddings. In
International conference on machine learning, pages 3294–3304. PMLR, 2021.

[74] Seher Acer, Ariful Azad, Erik G Boman, Aydın Buluç, Karen DDevine, SM Ferdous,
Nitin Gawande, Sayan Ghosh, Mahantesh Halappanavar, Ananth Kalyanaraman,
et al. EXAGRAPH: Graph and combinatorial methods for enabling exascale ap-
plications. The International Journal of High Performance Computing Applications,
35(6):553–571, 2021.

[75] Jiayu Li, Fugang Wang, Takuya Araki, and Judy Qiu. Generalized Sparse Matrix-
Matrix Multiplication for Vector Engines and Graph Applications. In 2019

IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC),
pages 33–42. IEEE, 2019.

[76] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs. In 2019 USENIX Annual Technical Conference, pages 443–458, Renton,
WA, July 2019. USENIX Association.

[77] Youhui Bai, Cheng Li, Zhiqi Lin, YufeiWu, YoushanMiao, Yunxin Liu, and Yinlong
Xu. Efficient Data Loader for Fast Sampling-Based GNNTraining on Large Graphs.
IEEE Transactions on Parallel and Distributed Systems, 32(10):2541–2556, 2021.

[78] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. DistDGL: Distributed Graph Neural
Network Training for Billion-scale Graphs. In 2020 IEEE/ACM 10th Workshop

on Irregular Applications: Architectures and Algorithms (IA3), pages 36–44. IEEE,
2020.

[79] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. A Survey of Quantization Methods for Efficient Neural Network
Inference. arXiv preprint arXiv:2103.13630, 2021.

[80] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
van Baalen, and Tijmen Blankevoort. A White Paper on Neural Network Quanti-
zation. arXiv preprint arXiv:2106.08295, 2021.

[81] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. GE-SpMM: General-
Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural Net-
works. In SC20: International Conference for High Performance Computing, Net-

working, Storage and Analysis, pages 1–12, 2020.
[82] Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui Zhang, Yufei

Ding, Yuan Xie, Huazhong Yang, and Yu Wang. Heuristic Adaptability to Input
Dynamics for SpMM on GPUs . In Proceedings of the 59th ACM/IEEE Design

Automation Conference, pages 595–600, 2022.
[83] Yuke Wang, Boyuan Feng, and Yufei Ding. QGTC: Accelerating Quantized Graph

Neural Networks via GPU Tensor Core. In Proceedings of the 27th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, page
107–119, New York, NY, USA, 2022. ACM.

[84] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. FeatGraph: A Flexible and Efficient Backend for Graph
Neural Network Systems. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC. IEEE, 2020.
[85] Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang,

and Tom Goldstein. VQ-GNN: A universal framework to scale up graph neural
networks using vector quantization. In Advances in Neural Information Processing

Systems, volume 34, pages 6733–6746. Curran Associates, Inc., 2021.
[86] Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and Yufei Ding.

SGQuant: Squeezing the Last Bit on Graph Neural Networks with Specialized
Quantization. In 2020 IEEE 32nd International Conference on Tools with Artificial

Intelligence (ICTAI), pages 1044–1052, 2020.
[87] Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary Graph Neural Net-

works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 9492–9501, 2021.
[88] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagat-

ing Gradients Through Stochastic Neurons for Conditional Computation. arXiv
preprint arXiv:1308.3432, 2013.

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION
The main contributions of this paper focus on developing and im-
plementing Tango, a novel approach that addresses the challenges
and opportunities associated with quantized Graph Neural Net-
work (GNN) training on GPUs. Tango offers three primary contri-
butions: lightweight rules for maintaining accuracy in quantized
GNN training, quantization-aware primitives and inter-primitive
optimizations for accelerating the training process, and seamless
integration with the Deep Graph Library (DGL) system. The compu-
tational artifacts associated with these contributions play a crucial
role in demonstrating the effectiveness of Tango in improving GNN
training performance.

In terms of software architecture, Tango is designed with op-
timized quantized CUDA kernels that replace the corresponding
primitives inDGL. These kernels, as essential artifacts, enable Tango
to accelerate GNN training while maintaining accuracy efficiently.
By integrating Tango with DGL, users can easily take advantage
of Tango’s performance benefits without modifying their existing
DGL models. The PyTorch auto-differential engine calls Tango’s
kernels during training, ensuring seamless interaction with the
widely used deep learning framework.

The computational artifacts presented in this paper contribute
significantly to the reproducibility of the experiments conducted in
the article. By providing a detailed description of the experimental
settings, including datasets, models, implementation details, and
evaluation platforms, the authors enable other researchers to repro-
duce the experiments and verify the performance improvements
demonstrated by Tango. The availability of Tango’s implementation,
integrated with the DGL system and using optimized quantized
CUDA kernels, ensures that researchers can accurately replicate the
experiments and validate the effectiveness of Tango in addressing
quantization challenges and opportunities for GNN training on
GPUs.

(i) Optimized Quantized CUDA Kernels: These kernels serve as
a key computational artifact in Tango’s design, allowing for ac-
celerated GNN training while maintaining the required accuracy.
They replace the corresponding primitives in DGL, thus offering
seamless integration and improved performance in GNN training.

(ii) Tango’s Integration with DGL: This artifact is crucial for user
experience and accessibility. By integrating Tango with the DGL
system, the performance benefits of Tango can be enjoyed by users
without modifying their existing DGL models. This seamless inte-
gration allows researchers to reproduce the experiments and verify
Tango’s effectiveness.

(iii) Datasets: The datasets used in the experiments (obgn-arxiv,
Pubmed, ogbn-products, DBLP, and Amazon) serve as essential
artifacts, as they provide a comprehensive evaluation of Tango’s
performance across various graph-related tasks. By offering de-
tailed information on these datasets, the authors ensure the repro-
ducibility of the experiments and validation of Tango’s performance
improvements.

REPRODUCIBILITY OF EXPERIMENTS
(i) Experiment Workflow: The experiment workflow includes the
end-to-end training evaluation and the evaluation of techniques. For
the end-to-end training evaluation, the computational artifacts will
be used to implement the training pipeline based on the example
scripts in DGL, encompassing dataset preparation, model creation,
training, and evaluation. The techniques are evaluated based on
the exposed API of Tango artifacts, utilizing the datasets as input
to report the performance.

(ii) Execution Time: Executing the end-to-end training evaluation
takes approximately 2 hours for all datasets. The evaluation of
techniques, which includes running time, hardware utilization, and
accuracy of each training epoch, also takes an estimated 2 hours to
complete.

(iii) Expected Results: The expected results consist of the exe-
cution time and the achieved model accuracy. In particular, the
evaluation of the artifact will generate the profiling results of each
experiment, which includes the running time, hardware utilization,
and accuracy of each training epoch. The results will be in the form
of plain text in the stdout.

(iv) Relating Expected Results to Article Results: The results from
the experiment workflow are designed to align with the results
presented in the article. The expected results will be converted to
figures, as shown in the paper, using Matplotlib. The paper uses
speedup to present the running time performance and the training
progress of the accuracy curve to give convergence. Providing
the expected results in the same format as the ones in the article
facilitates the reproducibility of experiments, making it easier for
other researchers to understand and verify the results.

ARTIFACT DEPENDENCIES REQUIREMENTS
(i) Hardware: V100S GPUs and Intel(R) Xeon(R) Gold 6244 @
3.60GHz CPU are used in the paper. Besides, GPU later than Pascal
are also supported by changing the compilation options.

(ii) Operating system: Ubuntu 20.04
(iii) Software libraries: Python 3.6.10, CUDA 11.7, DGL 0.8, Py-

Torch 1.13.0, and ogb 1.3.4
(iii) Input datasets: We choose the large graph datasets for GNN

training. ogbn-arxiv, Pubmed, ogbn-products are chosen for node
classification task. DBLP and Amazon are chosen for link prediction
task. All datasets are publicly available. In particular, ogbn-arxiv
and ogbn-products are avaliable in Open Graph Benchmark. DBLP
and Amazon are downloaded from SNAP network database. We
use DGL’s built-in Pubmed datasets.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Tango are integrated to PyTorch as extension with JIT compilation.
Specifically, the first time running the Python script importing
Tango will compile the code. The estimated compile time is 5 min
for the first time. The compiled binary is cached in OS-specific
PyTorch extension caching directory.

Chen, et al.

the datasets need to be preprocessed after downloading. Tango
provides the preprocessing script. For convenience, the preprocess-
ing is at runtime before the training. ogbn-arxiv, ogbn-products,
and Pubmed are automatically downloaded when importing. DBLP
and Amazon needs to be downloaded from SNAP website,

	Abstract
	1 Introduction
	2 Background
	2.1 A running example for GAT training
	2.2 GNN models
	2.3 Quantization

	3 Tango: an accuracy and speed co-designed quantization system
	3.1 Tango overview
	3.2 Lightweight rules for maintaining training accuracy during quantized training
	3.3 Quantization accelerated training

	4 Experiments
	4.1 Experimental setup
	4.2 Tango vs. state-of-the-art
	4.3 Turnaround time analysis
	4.4 Speed impact for # of quantization bits

	5 Related work
	6 Conclusion
	References

