
PeeK: A Prune-Centric Approach for 𝐾 Shortest Path
Computation

Wang Feng
University of North Texas

Shiyang Chen
Rutgers, The State University of New Jersey

Hang Liu
Rutgers, The State University of New Jersey

Yuede Ji
University of North Texas

ABSTRACT

The𝐾 shortest path (KSP) algorithm, which finds the top𝐾 shortest
simple paths from a source to a target vertex, has a wide range of
real-world applications, e.g., routing, vulnerability detection, and
biology analysis. While the top 𝐾 shortest simple paths offer in-
valuable insights, computing them is time-consuming. For example,
on a Twitter graph (61.6M vertices and 1.5B edges), the best parallel
method needs about 20 minutes to get 128 shortest paths between
two vertices. A key observation we made is existing works search𝐾
shortest paths from the original graph, while top 𝐾 shortest paths
only cover a meager portion of the original graph, e.g., less than
0.001% on a Twitter graph for 𝐾 = 128.

This paper introduces PeeK, a pruning-centric approach for KSP
computation. First, PeeK applies 𝐾 upper bound pruning to prune
the vertices and edges that will not appear in any of the 𝐾 shortest
paths. Second, PeeK adaptively compacts the graph that, not only
removes the deleted vertices or edges but also efficiently computes
the downstream task. Furthermore, we design efficient techniques
to parallelize and distribute PeeK. We compare PeeK with five
algorithms on various graphs. For parallel computation with 32
threads, PeeK achieves 5.1× and 28.8× speedup over the state-of-
the-art for 𝐾 = 8, 128, respectively. More importantly, when 𝐾
increases, the runtime of PeeK is barely affected. In particular,
when 𝐾 increases from 2 to 128 (64×), the runtime of PeeK only
increases 1.1×, while the state-of-the-art method increases 10.3×.
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1 INTRODUCTION

Finding the shortest path between two vertices in a graph is one
of the most fundamental algorithms for many graph applications,
e.g., navigation [55, 57, 58], biology analysis [13, 51], social net-
work analysis [17, 24, 33, 41, 42, 52, 53], and location and traffic
analysis [54, 71]. Whereas finding the shortest path is often too
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rigid to be practical for many real-world problems (see examples be-
low). Therefore, the 𝐾 shortest simple path (KSP) algorithm, which
identifies multiple top shortest paths between two vertices, is intro-
duced [23, 36, 70]. Generally speaking, real-world problems could
have either graphs with noisy data or applications with ill-defined
constraints, or both. Therefore, human experts are often required
to perform analysis based on the outputs from the shortest path
computation. It will be appealing if multiple top choices are com-
puted for the experts to analyze, as that might offer more hints for
them to derive the final optimal solution. Below we discuss four
real-world applications of KSP:

Routing. The network routing problem aims to select the best
path for navigation. The KSP algorithm is often used to findmultiple
paths [45, 66]. For instance, in an optical transport network, a KSP-
based routing and spectrum assignment algorithm can be used to
enable a flexible optical path network [66]. In particular, it first
finds 𝐾 ordered paths with the KSP algorithm. Then, it iteratively
checks the availability of the paths in increasing order. The first
available one will be the assigned path. Recently, the KSP algorithm
is also applied to the low earth orbit satellite networks (LSNs) [29],
e.g., SpaceX Starlink [8], and Amazon Kuiper [26].

Vulnerability detection. In code vulnerability detection, one
usually needs to find 𝐾 shortest paths on a control flow graph
(CFG) to verify the existence of a vulnerability [37, 39, 40, 69, 72].
In particular, a code site that an attacker can control is denoted
as a source vertex while another code site with vulnerability is
denoted as a target vertex in the CFG. To determine whether an
attacker can exploit this vulnerability, one needs to verify whether
the conditions on the paths between the source and target can
be satisfied. Since one cannot afford to find all the paths between
them, existing works [40, 69, 72] often identify top 𝐾 most likely
exploitable (shortest) paths and verify. Note that only finding the
single-source shortest path is also not desirable as that will likely
miss many vulnerabilities.

Biology analysis. In biology, various types of interaction data
are represented by a graph, e.g., protein-protein interaction, protein-
DNA/RNA interaction, and genetic interaction [50, 62]. The KSP
algorithm is often used to analyze complex interactions as multiple
shortest paths are required. For example, in a gene interaction
network, a vertex represents a gene and an edge denotes their
interaction. The gene inference problem is to identify the potential
regulatory pathways passing through a gene, where a regulatory
pathway is denoted as a path of interacting genes from a causal
gene to a target gene. The KSP algorithm can identify multiple such
paths which are the potential pathways [50, 62].

Graph database is an increasingly popular type of NoSQL sys-
tem, often using the property graph data model [9]. KSP search is
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one of the key features of the newly proposed GQL query languages
for property graph systems, as well as the SQL/PGQ extension,
which is new in SQL:2023 and proposed and backed by the Inter-
national Organization for Standardization (ISO) [20]. Particularly,
two types of KSP are included in both GQL and SQL/PGQ. One is
the exact KSP, named SHORTEST k. The other is SHORTEST
k GROUP, a KSP variant by grouping the paths with the same
lengths and returning the k shortest groups.

1.1 Existing Solutions

A naive solution is finding all the simple paths between the two
vertices and then extracting the 𝐾 shortest. However, this is im-
practical as finding all the simple paths is an NP-hard problem [61].
Therefore, various dedicated KSP algorithms have been proposed.

Yen’s algorithm is the foundational algorithm of the KSP prob-
lem [70]. In particular, it first finds the shortest path from the source
vertex 𝑠 to the target vertex 𝑡 via a single-source shortest path (SSSP)
algorithm. Next, it iterates 𝐾-1 times, and each iteration will find
the next shortest path. In particular, in the 𝑖-th iteration, it takes the
previously derived (𝑖-1)-th shortest path as the deviation path. Later,
it takes each vertex on that path as a deviation vertex (denoted as
𝑣), and the subpath from source 𝑆 to 𝑣 as the prefix path. The goal
is to find a different shortest path from 𝑣 to the target vertex 𝑇 and
concatenate that path with the prefix path. This concatenated path
is subsequently added to the candidate path set. After iterating all
the vertices in the (𝑖-1)-th shortest path, the shortest one from the
candidate set is the 𝑖-th shortest path. The time complexity of Yen’s
algorithm is O(𝐾𝑛(𝑚+𝑛 log𝑛)), where 𝑛 and𝑚 denote the number
of vertices and edges, respectively.

Yen’s algorithm is computationally intensive since it runs a large
number of the SSSP algorithms, i.e., up to 𝐾𝑛. To improve its perfor-
mance, two major types of algorithms have been proposed. (i)Node
classification (NC) algorithm [25] maintains a reverse shortest
path (SP) tree from every vertex to the target. It also classifies the
vertices into three colors, i.e., red, yellow, and green. A vertex is red
if it is on the prefix path, green if it can reach the target vertex with-
out visiting a red vertex, and yellow as the remaining vertices. For
each deviation vertex, it can directly identify a candidate shortest
path using the reverse SP tree if its neighbor vertex with the lowest
weight is green. Otherwise, it runs SSSP on a subgraph only with
the yellow vertices. Though it reduces the number of SSSP calls,
it introduces additional overheads in updating the reverse SP tree
and vertex colors. OptYen [5] avoids the dynamic updates by only
using one reverse SP tree and computing the SSSP on the original
graph if needed.

(ii) Sidetracks-based (SB) algorithm [47] records a large num-
ber of reverse SP trees from different vertices and aims to reduce
the SSSP calls by reusing those trees to find a valid shortest path.
This algorithm has an obvious memory issue as it stores a large
number of reverse SP trees. SB* algorithm further improves the
time efficiency by resuming the previously computed SSSP when
a new SSSP needs to be computed [6, 7]. SB* is considered the
state-of-the-art serial algorithm though it costs even more space to
record the status of the previously computed SSSPs.

For parallel computation, existing works have explored two
strategies. One is directly parallelizing the SSSP algorithm [5, 63].
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Figure 1: The percentage of the covered vertices and edges

against different𝐾 values for a Twitter (GT) graphwith 61.6M

vertices and 1.5B edges.

The other aims to parallelize the execution of multiple SSSPs [63]. In
particular, on each deviation path, there is no dependency between
all the SSSPs starting from different source vertices. Combining the
two strategies, Ajwani et al. proposed a hybrid method [5], which
is able to not only concurrently run multiple SSSPs but also run
each SSSP in parallel. With the hybrid parallel strategy, OptYen is
considered the state-of-the-art parallel method [5].

1.2 Observation

Due to the high time complexity, it requires an enormous amount
of time to compute KSP, even for a small 𝐾 value. For example, for
the popular Twitter graph (61.6M vertices and 1.5B edges) [11], the
best parallel KSP method, OptYen [5], would require, on average,
1,131 seconds (or about 20 minutes) to compute 128 shortest paths
between two vertices. This time is projected to grow significantly
for larger graphs and𝐾 . It is hence of paramount value to accelerate
the KSP algorithm such that the top𝐾 shortest paths can be derived
in an acceptable time envelope.

A key observation we found is the vertices from the top 𝐾

shortest paths only cover an extremely small portion of the

original graph, even for very large 𝐾 values. However, existing
works always derive the 𝐾 shortest paths on the original graph,
potentially leading to redundant computations. Figure 1 shows the
percentage of the covered vertices and edges for different 𝐾 values
on the Twitter graph on an average of 100 randomly selected source
and reachable target vertices. Here, a vertex or edge is covered if
it appears in any of the 𝐾 shortest paths. Even for a 𝐾 value as
large as 4, 096, the covered vertex percentage is less than 0.01%,
and the edge is less than 0.001%. Among all the source and target
pairs, the maximum percentage of the covered vertices is less than
0.014%, and the edge is less than 0.001%. That means only 3,813 out
of 61.6 M vertices appear in the final 4,096 shortest paths. The same
observation also holds for other tested graphs (Section 7).

1.3 Contributions

In this paper, we devise PeeK12, a new method that can remarkably
accelerate the computation for KSP problems. Given a graph, a
source vertex 𝑠 , a target vertex 𝑡 , and 𝐾 , PeeK first applies the 𝐾
upper bound pruning technique to prune the vertices and edges
that will not appear in any of the 𝐾 shortest paths. Later, PeeK
judiciously chooses two compaction methods to remove the deleted

1PeeK stands for prune-centric KSP.
2The source code of PeeK is available at https://github.com/SC-Lab-Go/PeeK

https://github.com/SC-Lab-Go/PeeK
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vertices and edges for better memory access during KSP computa-
tion and lower compaction overhead. Finally, PeeK computes the
KSPs with an optimized node classification method.
𝐾 upper bound pruning. Starting from the key observation,

we propose a 𝐾 upper bound pruning technique. The key idea is to

remove the unnecessary vertices and edges as many as possible, where

a vertex or edge is unnecessary if it will not appear in the 𝐾 shortest

paths. To achieve that, this method prunes the vertices and edges
whose shortest distance from the source to the target passing this
vertex is longer than an estimated upper bound of 𝐾 shortest path
distance. Deriving a tight and sound upper bound is the key to this
approach, which is done as follows: we run two SSSPs to derive
the shortest distances from the source vertex to each vertex and
from each vertex to the target vertex. Subsequently, we add these
two distances to derive the shortest paths from the source through
each vertex to the target vertex. Finally, for the vertices that fail to
appear in the estimated valid 𝐾 shortest paths, we delete them as
well as their edges. This pruning can help reduce 98.4% vertices and
97.7% edges on average across eight tested graphs when 𝐾 equals
8. Similar pruning powers are observed for other K values.

Adaptive graph compaction. The 𝐾 upper bound pruning will
update the graph several times by deleting vertices or edges. To
efficiently update the graph and compute the downstream task,
we design an adaptive graph compaction method that takes the
efficient static graph format, i.e., compressed sparse row (CSR) [15],
as the base and adaptively selects from two strategies. One is edge
swap-based, which swaps the deleted edges of a vertex to the end
of its CSR representation. The other is graph regeneration based,
which regenerates a new CSR for the remaining graph. Compared
with the 𝐾 upper bound pruning using the conventional status
array method to compact the graph, the adaptive strategy can bring
1.5× and 33× speedup for 𝐾 equaling 8 and 128, respectively.

Parallel computation. To efficiently compute PeeK in both
shared and distributed memory systems, we first classify all the
jobs as data, embarrassingly, or task parallel. As embarrassingly and
task parallel jobs incur low communication overhead, we aim to
leverage them the most for parallel design. That is, 𝐾 upper bound
pruning is mostly designed as a data parallel job, the adaptive graph
compaction is an embarrassingly parallel job, and the KSP compu-
tation is a task parallel job. With a few specialized optimizations
for both shared- and distributed-memory computation, PeeK can
achieve stable scalability. In particular, for shared-memory sys-
tems, PeeK with 32 threads achieves 4× speedup over 1 thread. For
distributed-memory systems, PeeK with 64 computing nodes (1,024
cores) achieves 30× speedup over 1 computing node (16 cores).

Experiment. We compare PeeK with five algorithms, includ-
ing Yen’s algorithm [70], node classification (NC) [25], OptYen [5],
sidetracks-based (SB) [7], and an optimized SB algorithm, named
SB* [7]. Among them, OptYen is the state-of-the-art parallel method,
and SB* is the state-of-the-art serial algorithm. On eight tested
graphs, for serial computation, PeeK achieves 2.2× and 3.1× speedup
over the state-of-the-art for 𝐾 = 8, 128, respectively. For parallel
computationwith 32 threads, PeeK achieves 5.1× and 28.8× speedup
over the state-of-the-art for 𝐾 = 8, 128, respectively. More impor-
tantly, when the value of𝐾 increases, PeeK is barely impacted. That
is, when 𝐾 increases from 2 to 128 (64×), PeeK only increases 1.1×,
while the state-of-the-art method increases 10.3×.

Algorithm 1: Yen’s algorithm.
Function YenKSP(G, s, t, K):

1 P[0] = SSSP(𝐺, 𝑠, 𝑡 ) ; // The found shortest path.
2 C = ∅ ; // The candidate path set.
3 for 𝑘 ∈ [1, 𝐾 ) do
4 for vertex 𝑣 ∈ 𝑃 [𝑘 − 1] do
5 prefix = subpath(𝑠, 𝑣, 𝑃 [𝑘 − 1])
6 remove any edge 𝑣-𝑤 (w ∈ N(𝑣)) if it ∈ 𝑃 [0], ..., 𝑃 [𝑘 − 1]
7 suffix = SSSP(𝐺, 𝑣, 𝑡 )
8 newPath = prefix + suffix
9 𝐶.𝑎𝑑𝑑(newPath) if newPath ∉ C
10 restore graph G
11 P[k] = min(C) if C ≠ ∅
12 return P

The Novelty of PeeK lies in three aspects. (i) 𝐾 upper bound

pruning is the key contribution, which is first introduced to KSP
computation. (ii) Adaptive graph compaction is used to couple 𝐾
upper bound pruning as the remaining graph might change dra-
matically, which should be computed differently to gain the best
performance. (iii) PeeK can integrate with existing KSP algorithms

to boost their performance. In particular, 𝐾 upper bound pruning
can serve as a preprocessing step for existing algorithms. Also,
one can fuse the adaptive compaction method to achieve the best
performance.

2 BACKGROUND

Problem definition. Formally, we define KSP as below.

Definition 1. Let 𝐺 (𝑉 , 𝐸,𝑊 ) be a directed and weighted graph,
where 𝑉 , 𝐸, and𝑊 denote the vertex, edge, and edge weight sets,

respectively. We require {𝑤 > 0|∀𝑤 ∈𝑊 }. Given a source vertex 𝑆 ,

a target vertex 𝑇 , and the required number of shortest paths 𝐾 , the

KSP algorithm finds 𝐾 paths that meet two conditions, that is, these

paths are (i) loopless and (ii) the top 𝐾 shortest distances. Here, the

path distance is the sum of the edge weights on that path.

Yen’s algorithm [70], shown in Algorithm 1, runs multiple
SSSPs (lines 1 and 7) and dynamically updates the graph (lines
6 and 10) to make sure the previously found shortest paths are
excluded. After iterating 𝐾-1 iterations (line 3), the final 𝐾 shortest
paths will be identified.

3 OVERVIEW

Figure 2 overviews PeeK with a running example. Particularly,
first, PeeK performs 𝐾 upper bound pruning to quickly identify
the unnecessary vertices and edges that will not appear in any 𝐾
shortest paths. This is motivated by the observation that 𝐾 shortest
paths use only a small portion of the vertices and edges. Here,
vertices {a, b, c, d, e, i, o, p, r} are identified to be pruned. Later, PeeK
adaptively compacts the graph by pruning the unnecessary vertices
and their adjacent edges. PeeK judiciously selects between edge
swap and graph regeneration-based graph compaction techniques.
After that, the compacted remaining graph is shown in Figure 2(c).

In the end, we compute the KSPs on the compacted graph by
customizing the state-of-the-art parallel method, i.e., OptYen [5].
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Figure 2: Overview of PeeK. Given an example graph shown in (a), source vertex 𝑠, target vertex 𝑡 , and 𝐾 equals 3, PeeK first

applies 𝐾 upper bound pruning to identify the unnecessary vertices and edges as shaded in (b). Next, PeeK adaptively compacts

the graph to be (c) by pruning the unnecessary vertices and edges. Further, PeeK computes KSPs as shown in (d).

In particular, we only use the reverse tree and disregard the vertex
colors. The reverse tree can help quickly find a candidate path. If
such a path is simple, no further computation is required. Otherwise,
we compute a new SSSP on the remaining graph. In this example,
the identified three shortest paths are shown in Figure 2(d).

4 GRAPH PRUNINGWITH 𝐾 UPPER BOUND

4.1 𝐾 Upper Bound Pruning

The key insight of 𝐾 upper bound pruning is, a vertex 𝑣 can be

pruned if the shortest distance from the source to the target passing

this vertex, denoted as 𝑑𝑖𝑠𝑡 (𝑠, 𝑣, 𝑡), is longer than the estimated 𝐾

shortest paths. This is true as the other paths passing 𝑣 will not be
shorter than 𝑑𝑖𝑠𝑡 (𝑠, 𝑣, 𝑡). Similarly, the edges adjacent to vertex 𝑣
will not appear on any 𝐾 shortest paths and therefore can also be
pruned.

Algorithm 2 denotes the pseudocode of the proposed 𝐾 upper
bound pruning technique. The key challenge is to efficiently find
a correct and tight upper bound, denoted as 𝑏. It must be correct
since we cannot overly prune any vertex or edge that appears in
the final 𝐾 shortest paths. Also, it should be tight so we can prune
as many unnecessary vertices or edges as possible. The ideal upper
bound is the distance of the 𝐾-th shortest path. Though it can not
be obtained at this stage, we can leverage the shortest distance
of any vertex 𝑣 , i.e., 𝑑𝑖𝑠𝑡 (𝑠, 𝑣, 𝑡), to get a correct and tight upper
bound. That is, we can first get the shortest distance from the source
vertex and to the target vertex for all the vertices, i.e., 𝑠𝑝𝑆𝑟𝑐 [∗]
and 𝑠𝑝𝑇𝑔𝑡 [∗] (lines 1-2 in Algorithm 2). Then, we can obtain the
shortest distance by adding up the two distances. In particular, for
any vertex 𝑣 , the shortest distance from the source to the target
vertex passing it is greater than or equal to 𝑠𝑝𝑆𝑟𝑐 [𝑣] + 𝑠𝑟𝑇𝑔𝑡 [𝑣]
(lines 3-4 in Algorithm 2). This is summarized in Lemma 4.1 and
proved accordingly.

Lemma 4.1. For any vertex 𝑣 , the distance from the source 𝑠 to the

target 𝑡 via vertex 𝑣 is equal to or longer than 𝑠𝑝𝑆𝑟𝑐 [𝑣] + 𝑠𝑟𝑇𝑔𝑡 [𝑣].

Proof. We use 𝑠→...→𝑣→...→𝑡 to denote the combined path
from 𝑠𝑝𝑆𝑟𝑐 [𝑣] + 𝑠𝑟𝑇𝑔𝑡 [𝑣]. Since 𝑠𝑝𝑆𝑟𝑐 [𝑣] denotes the shortest dis-
tance from 𝑠 to 𝑣 , the path 𝑠→...→𝑣 is the shortest. Similarly, the
path 𝑣→...→𝑡 is also the shortest. Therefore, if no duplicate vertex
appears, this path will be the shortest from 𝑠 to 𝑡 passing vertex

Algorithm 2: 𝐾 upper bound pruning algorithm.
Function kUpperBoundPruning(G, s, t, K):
// Step 1: Get shortest distances from source and to target.

1 spSrc, parentSrc = SSSP(G, s)
2 spTgt, parentTgt = reverseSSSP(G, t)

// Step 2: Identify 𝐾 upper bound.
3 for 𝑣 ∈ 𝐺 in parallel do

4 dist[v] = spSrv[v] + spTgt[v]
5 q = ∅
6 for 𝑣 ∈ 𝐺 in the increasing order of dist[*] do

7 q.push(v) if isValid(v, parentSrc, parentTgt)
8 break if q.size() == K
9 b = dist[q.back()]

// Step 3: Prune unnecessary vertices and edges.
10 for 𝑣 ∈ 𝐺 in parallel do

11 G.delete(v) if dist[v] > b
12 for 𝑒 ∈ 𝐺 in parallel do

13 G.delete(e) if G.weight(e) > b
14 return G

𝑣 . However, if there are duplicate vertices, we need to find an al-
ternative path either from 𝑠 to 𝑣 or from 𝑣 to 𝑡 to find the correct
shortest path, which will be greater than or equal to the distance
in 𝑠𝑝𝑆𝑟𝑐 [𝑣] or 𝑠𝑝𝑇𝑔𝑡 [𝑣]. Together, we proved it. □

Figure 3(b) and (c) show the generated source and target SSSP
trees along with spSrc and spTgt, respectively, for the running ex-
ample graph. However, the path generated in this way may not be
valid as it might include loops, because the subpath from the source
SSSP tree may intersect with the subpath from the target SSSP tree.
For example, as shown in Figure 3(e), the source path of vertex 𝑖 is
𝑠→𝑓→ 𝑗→𝑖 , while the target path is 𝑖→ 𝑗→𝑡 . The combined path is
invalid as vertex 𝑗 appears twice. To address that, we design a path
validation check function to see whether it is valid. In particular, we
first find the subpath from the source vertex by backtracking the
parent array. Later, we apply the same strategy to find the subpath
to the target vertex. From these two subpaths, a path is regarded as
valid if there is no duplicate vertex.
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(b) The source SSSP tree and 
distance array spSrc.

(d) The remaining graph and 
distance sum array spSum.
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Figure 3: The process of 𝐾 upper bound pruning when 𝐾 = 3. (b) denotes the source SSSP tree and the distance array 𝑠𝑝𝑆𝑟𝑐. (c)

denotes the target SSSP tree and the distance array 𝑠𝑝𝑇𝑔𝑡 . (d) shows the distance sum array 𝑠𝑝𝑆𝑢𝑚, the identified 𝐾 upper bound

value 14, and the remaining graph. (e) denotes an invalid path taking vertex 𝑖 as an intermediate vertex.

After we get the shortest, valid, and unique 𝐾 paths, we can
use that distance as the 𝐾 upper bound value, 𝑏. To get that, we
explore the vertices in the increasing order of their distances, check
if they are valid, and make sure the path is unique, which means
no two same paths can be added to the queue (lines 6-8). We will
take the 𝐾-th valid distance as the upper bound value, 𝑏 (line 9).
Using Figure 3 as an example, after investigating the shortest path
starting from vertex 𝑠 , we can skip vertex 𝑓 , 𝑗 , and 𝑡 as they share
the same path. By only investigating three paths passing 𝑠 , 𝑔, and 𝑞,
we derive the upper bound value 14. Subsequently, we can prune
the vertices whose distances are greater than the upper bound (lines
10-11). This is summarized in Lemma 4.2 and proved accordingly.
In the last, we further prune the edges whose weights are greater
than the upper bound value (lines 12-13).

Lemma 4.2. Given the estimated upper bound value 𝑏, if the short-

est path from the source vertex 𝑠 to the target vertex 𝑡 via vertex 𝑣 is

greater than 𝑏, vertex 𝑣 cannot appear in any 𝐾 shortest paths.

Proof. This Lemma holds true since there are already𝐾 shortest
paths covered by the upper bound value 𝑏. □

As shown in Figure 3, from the two shortest distance arrays,
𝑠𝑝𝑆𝑟𝑐 and 𝑠𝑝𝑇𝑔𝑡 , we can get the shortest distance passing each
vertex, denoted as 𝑠𝑝𝑆𝑢𝑚. From there, we derive the upper bound
value 𝑏 as 14 when 𝐾 equals 3. Then, we can prune all the vertices
whose 𝑠𝑝𝑆𝑢𝑚 is greater than the upper bound. With that, the ver-
tices {a, b, c, d, e, i, o, p, r} along with their edges are pruned. Note
that, the vertices {b, c} are pruned as they are unreachable.

Theorem 4.3. The 𝐾 shortest paths found from the pruned graph

are the same as the ones from the original graph.

Proof. Compared with the original graph, we pruned the un-
necessary vertices and edges based on the 𝐾 upper bound value.
According to Lemma 4.2, only the vertices that are not in any 𝐾
shortest paths are pruned, which means, the vertices covered by
the 𝐾 shortest paths are kept. Therefore, the 𝐾 shortest paths found
from the pruned graph are the same as the ones found from the
original graph. □

This Theorem presents the soundness of our design.
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Figure 4: Percentage of pruned vertex (V) and edge (E) by 𝐾

upper bound pruning for eight tested graphs and the average

when K is (a) 8 and (b) 128.

4.2 Benefits and Complexity Analysis

Benefits. Figure 4 presents the percentage of pruned vertex and
edge count for eight tested graphs (Section 7). For each graph, we
run 32 pairs of randomly chosen source and reachable target ver-
tices. One can observe that our 𝐾 upper bound pruning technique
can prune a large percentage of the vertices and edges, which can
dramatically reduce the required graph for KSP computation. In
particular, when 𝑘 equals 8, it prunes 98.4% vertices and 97.7% edges
on average. When 𝐾 becomes as large as 128, it shows a similar
pruning power by pruning 97.7% vertices and 96.6% edges.

Complexity analysis. The time complexity of 𝐾 upper bound
pruning is O(𝑚+ (𝐾 +𝜆+ log𝑛)𝑛), where 𝑛 and𝑚 denote the vertex
and edge count, respectively, 𝐾 denotes the required number of
shortest paths, and 𝜆 denotes the number of inspected invalid paths.
This time complexity is made up of three major operations.

First, the classical single-source shortest path (SSSP) algorithm
takes O(𝑚+𝑛 log𝑛) time [28]. Second, the vertex and edge deletion
operation takes O(𝑚 + 𝑛) time as it needs to iterate all the vertices
and edges. Third, finding the 𝐾 upper bound value takes O((𝐾 +𝜆+
log𝑛)𝑛) time. It needs to sort the vertices with O(𝑛 log𝑛). Further,
it needs to verify the validity for 𝐾 + 𝜆 paths and each validity
verification takes O(ℎ), where ℎ denotes the height of the shortest
path tree. Combining them together, we get the time complexity
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Figure 5: For the running example graph, (a) shows the original CSR, (b) shows the CSR after edge swap-based graph compaction

where the shaded vertices and edges are deleted, and (c) shows the new CSR after graph regeneration. The highlighted edges in

the adjacency list from (a) to (b) show the changes made by the edge swap-based method.

of O(𝑚 + (𝐾 + 𝜆 + log𝑛)𝑛). In practice, we observe the value of 𝜆
is small, and usually less than 𝐾 . Compared to the KSP algorithm
with O(𝐾𝑛(𝑚 + 𝑛 log𝑛)) time complexity, 𝐾 upper bound pruning
is much faster by taking about O(1/𝐾𝑛) time of the KSP algorithm.

The space complexity of 𝐾 upper bound pruning is O(𝑛) as
it uses five arrays with the size of 𝑛. That includes the shortest
distance and parent arrays both from the source and to the target,
and another distance array representing the sum.

5 ADAPTIVE GRAPH COMPACTION

5.1 Unique Graph Compaction Patterns

The graph is updated three times during the implementation, i.e.,
after the first SSSP, after the second SSSP, and after the 𝐾 upper
bound pruning. After the first SSSP, we can prune the vertices
and edges that are unreachable from the source. This can help to
improve the computational efficiency of the second SSSP. Similarly,
after the second SSSP, we can prune the vertices and edges that can
not reach the target. We observe two unique computation patterns
of the graph update: (i) It only involves vertex or edge deletion, not
insertion. That also means the deleted vertex or edge will not be
recovered. (ii) The graph is updated only three times in batch style.

More importantly, various heavy computationswill be performed
after the graph update, including SSSPs, sorting, and KSP. That
means we need to focus on the end-to-end computation time, which
includes both graph update and downstream computation. Though
recent works on dynamic graphs have achieved significant improve-
ment [21, 59, 67, 68], they fall behind for the end-to-end computa-
tion in this scenario. In particular, for the Twitter graph, one of the
state-of-the-art dynamic graph update systems, Terrace [59], takes
about 1,900 seconds to compact the graph, while regenerating a
new compressed sparse row (CSR) [15] only takes about 1 second.

The CSR format [15] is commonly used as it is not only space
efficient but also locality preserved. Figure 5(b) presents the CSR
format of the running example graph. In particular, it uses two
arrays, one is the adjacency list of length𝑚 by saving the target ver-
tex of each edge (adj_list in Figure 5(b)). The other is the beginning
position array of length 𝑛 + 1 (beg_pos in Figure 5(b)), where each
value denotes the corresponding vertex’s beginning position in the
adjacency list. To traverse a vertex’s (e.g., 𝑣) edges, one can easily
get them from the adj_list with the range [beg_pos[v], beg_pos[v+1]).

However, the CSR format is less efficient when the graph is
dynamically changing. Motivated by this, we design an adaptive
compaction method that takes the CSR format as the base and

adaptively updates it. In particular, we adaptively select from two
strategies, i.e., edge swap and graph regeneration-based.

5.2 Edge Swap-based Compaction

The edge swap-based compaction method is specially designed
for vertex/edge deletion based on the CSR format. In particular, it
introduces two additional arrays, one is a vertex status array to
mark whether a vertex is deleted or not, and the other is an offset
array to indicate the new offset of each vertex in the adjacency list.
Both of them are with lengths of 𝑛.

Edge swap-based method deletes vertex and edge in the fol-
lowing ways. (i) For vertex deletion, it changes the status of the
deleted vertices to 0 in the status array. One can avoid visiting the
deleted vertices by checking the status array first. As shown in
Figure 5, the vertices {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑖, 𝑜, 𝑝, 𝑟 } are marked as deleted. (ii)
For edge deletion of a source vertex, it swaps the deleted edge in
the adjacency list with the last kept edge and updates the num-
ber of valid edges (offset array) by decreasing 1. When traversing
the edges of vertex 𝑣 , instead of using the adj_list with the range
[𝑏𝑒𝑔_𝑝𝑜𝑠 [𝑣], 𝑏𝑒𝑔_𝑝𝑜𝑠 [𝑣 + 1]) in traditional CSR, it uses the range
[𝑏𝑒𝑔_𝑝𝑜𝑠 [𝑣], 𝑏𝑒𝑔_𝑝𝑜𝑠 [𝑣] +𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑣]). For vertex 𝑓 in Figure 5, the
edges to 𝑖 and 𝑝 are deleted. It swaps the deleted edge to 𝑖 with the
kept edge to 𝑗 , and the edge 𝑝 does not change since it is in the end.
Further, the offset value is changed to 2.

The edge swap operation for a vertex can be implemented by
iterating two pointers, i.e., a front pointer from the first edge, and
a back pointer from the last edge. As the edge swap-based graph
compaction needs to iterate all the edges of the remaining vertices
and the swap operation takes O(1) time, the total time complexity
is O(𝑛 +𝑚𝑎), where𝑚𝑎 =

∑
𝑣∈𝑉𝑟 𝑑 (𝑣), 𝑉𝑟 denotes the remaining

vertex set, and 𝑑 (𝑣) is the out degree of vertex 𝑣 . The 𝑚𝑎 is less
than𝑚, but greater than𝑚𝑟 which is the remaining edge count.

5.3 Graph Regeneration-based Compaction

Graph regeneration-based method regenerates a new CSR only
with the remaining vertices and edges. To create a new CSR, we
first build a vertex map between the original and new vertex ID.
For the example in Figure 5(c), the new ID of vertex 𝑓 is 0, which
was 5 in the original CSR. Then, we iterate the remaining vertices
and their edges to calculate the new offset in the new adjacency
list. For example, the offset of vertex 𝑓 becomes 2 as only the edges
to 𝑔 and 𝑗 are remaining. In the end, we update the new beginning
position array and the new adjacency list with the new vertex IDs.
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Figure 5(c) shows the newly generated CSR for the example
graph. In particular, the lengths of the beginning position array and
adjacency list become 8 and 11, respectively, which were 17 and 26
before. With that, the downstream computation will be solely based
on the new CSR representation. The time complexity of the graph
regeneration-based method is the same as the edge swap-based
method, i.e., O(𝑛 +𝑚𝑎), since we need to iterate all the vertices and
all the edges of the remaining vertices.

5.4 Adaptive Compaction

Our adaptive selection method judiciously switches between edge
swap-based and regeneration-based graph compaction based on
the end-to-end performance, including both graph compaction and
the downstream computation task.

Comparison of graph compaction. The edge swap-based
graph compaction method will update the status array for the
deleted vertices, which equals 𝑛 −𝑛𝑟 , where 𝑛𝑟 denotes the number
of remaining vertices. Then, it traverses the remaining vertices
in the original CSR, and traverses the edges of all the remaining
vertices (𝑚𝑎). In the worst case, it needs to traverse all the edges.
That means, its runtime is positively correlated to the edge count of

all the remaining vertices𝑚𝑎 . In contrast, the regeneration-based
method takes a longer time to compact the graph as it involves sev-
eral operations. Creating a vertex map will read 𝑛 times, while the
update takes 𝑛𝑟 times. Calculating the new offset in the adjacency
list will read 𝑛 vertices and𝑚𝑎 edges, and the update to the new
CSR takes𝑚𝑟 + 𝑛𝑟 times. In total, the reading takes𝑚𝑎 + 2𝑛 times,
and the update takes 𝑚𝑟 + 2𝑛𝑟 times. That means, its runtime is

positively correlated to the number of remaining vertices and edges.

Observation I : The graph compaction of bothmethods is positively

correlated to the number of remaining vertices and edges, while the

regeneration-based method is slower.

Comparison of downstream computation. For the down-
stream computation task, the edge swap-based method still uses
the original CSR though with a status array and a new offset array.
Though the time complexity of the downstream computation is
based on the remaining graph, the actual runtime is decided by the
number of remaining vertices and edges. That means, its runtime is

positively correlated to the number of remaining vertices and edges.

For the regeneration-based method, the downstream computation
is based on the new CSR. Assuming KSP is the downstream task,
the time complexity will become O(𝐾𝑛𝑟 (𝑚𝑟 +𝑛𝑟 log𝑛𝑟 )), where𝑚𝑟
and 𝑛𝑟 denote the edge and vertex count for the remaining graph.
It also enjoys better data locality than the edge swap-based method
as no deleted vertices or edges are in the CSR. That means, the more

vertices or edges remaining, the greater𝑚𝑟 and 𝑛𝑟 become, thus more

computation will be required.

Observation II : The downstream computation of both methods is

positively correlated to the number of remaining vertices and edges,

while the regeneration-based method is faster.

Adaptive selection. Combining Observation I and II, we can
conclude that when the remaining graph is large, e.g., in the same
order as the original graph, the edge swap-based method fits bet-
ter as it takes much less time to compact the graph. Conversely,
when the remaining graph is smaller, the graph regeneration-based
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Figure 6: The end-to-end performance of graph regeneration,

edge swap, and status array-based methods plus the down-

stream KSP (𝐾 = 8) computation on the Twitter graph.

method fits better as its downstream computation is much faster.
Motivated by this, we quantitatively estimate the difference, i.e.,
𝑚𝑟 < 𝛼 ·𝑚, where𝑚𝑟 and𝑚 denote the edge count of the remaining
and original graph, respectively, and 𝛼 is a coefficient to estimate
the trade-off between the twomethods. That is, when𝑚𝑟 < 𝛼 ·𝑚, we
select the regeneration-based method, otherwise edge swap-based
method. 𝛼 is in [0, 1], which is mainly decided by the downstream
task, i.e., a heavier workload suggests a higher value (e.g., 0.6) so
that the regeneration-based method can be more likely used.

Figure 6 shows an example with the Twitter (GT) graph for the
end-to-end time difference between the two methods when the
number of remaining edges varies. We also compare with a baseline
method, i.e., status array-based, which uses two status arrays to
mark whether a vertex or edge is deleted or kept. We first make sure
the vertices and edges in the 𝐾 shortest paths (𝐾 = 8) are always
kept, then we randomly delete the required number of edges. We
start by only keeping 0.001% percentage of edges, and increase by
4 times till the whole graph is kept.

One can find four interesting observations. (i) When the kept
graph is extremely small, the regeneration-based method is much
faster than others, e.g., 48× and 37× speedup over the status array
and edge swap-based, respectively, for 0.001% edges. Then, the
runtime of the regeneration-basedmethod gradually growswith the
increase of the remaining edges. (ii)When the edge count is between
1% and 16%, the three methods share a similar time. (iii) When the
majority of the graph is kept, edge swap-based is much faster than
regeneration-based, e.g., 4.4× and 7.6× speedup for 65.53% and 100%,
respectively. (iv) Further, the edge swap-based method is faster than
the status array-based method. In particular, it consistently achieves
about 1.3× speedup for different edge percentages.

6 PARALLEL PEEK

6.1 Parallel Computation Patterns of PeeK

Figure 7 summarizes the parallel computation patterns of PeeK.
We classify each job as data parallel, embarrassingly parallel, or
task parallel. Data parallel job runs the same task on different parts
of the data simultaneously with all the workers. Embarrassingly

parallel job is a subset of task parallel workloads, where there is little
or no dependency for communication between different workers.
Task parallel job refers to one or more independent tasks that can
be running concurrently. As embarrassingly and task parallel jobs
usually incur low communication overhead, we aim to leverage
them the most for the parallel and distributed design of PeeK.
𝐾 upper bound pruning includes two major components, i.e.,

SSSP computation, and identifying 𝐾 upper bound value. (i) The
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Figure 7: The parallel computation patterns of PeeK.

SSSP can be computed with parallel SSSP algorithms, which is a
data parallel job. It is computed twice, one is from the source vertex
with outgoing edges, and the other is from the target vertex with
incoming edges. (ii) In identifying the 𝐾 upper bound value, sorting
the distance sum array can be implemented with parallel sorting
algorithms [1, 35, 64]. Further, for path validation, computing if
any vertex from the source path also appears in the target path
takes most of the time. After getting the two paths, we design an
embarrassingly parallel method by concurrently searching for any
vertex in the source path against all the vertices in the target path.
We use a hash table to achieve O(1) search time complexity.

Adaptive graph compaction judiciously selects between edge
swap and graph regeneration-based compaction techniques. We
layout both as embarrassingly parallel workloads. (i) We parallelize
the edge swap-based graph compaction technique by allowing each
thread to work on its own partition of the vertices. In particular,
for each vertex, it will use two pointers to scan its edges in the
array of adj_list and swap the kept vertices to the front. (ii) We
parallelize the graph regeneration with embarrassing parallelism in
three steps. First, we scan all the vertices by allowing each worker
to compute its own partition to identify the kept ones. Second,
for the kept vertices, we partition them based on the number of
available threads and use the prefix sum [12, 31] to figure out the
number of kept edges for each partition. Then, we write the kept
edges to the new CSR by allowing each worker to compute its own
partition.

For KSP computation, we leverage a two-level parallel strat-
egy proposed by Ajwani et al. In the inner level, we can directly
parallelize the frequently called SSSP algorithm [5, 63]. As the KSP
computation needs to run up to 𝐾𝑛 SSSPs, and there is no depen-
dency between the SSSPs starting from different source vertices on
the same deviation path, we concurrently run multiple SSSPs in the
outer level. The outer level workload can be implemented as task
parallel, while the inner level workload is data parallel.

6.2 Parallel Implementation

Shared-memory implementation. Following the parallel com-
putation patterns of PeeK, we use the efficient Δ-stepping [56]
algorithm for SSSP computation. The key idea of Δ-stepping is to
group the vertices into buckets and process a bucket of vertices in
parallel instead of sequentially processing one-vertex-at-a-time in
Dijkstra’s algorithm [22]. In identifying the 𝐾 upper bound value,
we use the block indirect sort algorithm [1]. For both edge swap
and graph regeneration-based compaction, we use vertex-centric
parallelism as the dependency only appears within the edges of one
vertex, not crossing vertices. To avoid workload imbalance between
different threads, we partition them based on the edge count to

Table 1: Graph benchmarks (sorted by vertex count).

Graph Abbr. Graph type # vertex # edge Weight
Rmat21 R21 Synthetic graph 2.1M 33.6M random
Rmat21-U R21U Synthetic graph 2.1M 33.6M 1
Livejournal LJ Social network 4.8M 68.5M random
Livejournal-U LJU Social network 4.8M 68.5M 1
Wikipedia WL Article network 13.6M 437.2M random
Wikipedia-U WLU Article network 13.6M 437.2M 1
GAP-web GW Web network 50.6M 1.9B real
GAP-twitter GT Social network 61.6M 1.5B real

make sure each partition gets an approximately equivalent number
of edges. For KSP computation on the remaining graph, assume
there are 𝑝 threads, and the length of the 𝑖-th deviation path is 𝑙𝑖 ,
we assign ⌊𝑝/𝑙𝑖 ⌋ threads for each SSSP with the ones closing to the
source vertex to get one extra thread if any threads are remaining.

Distributed-memory implementation. We distribute PeeK
following the same strategy of the shared-memory design. We par-
tition the graph using row-wise 1-d partitioning [3, 16, 48]. Though
it is simple, it is communication friendly and does not yield extra
time for pre-processing. We leverage the distributed Δ-stepping
algorithm [3] for both SSSPs. In identifying the 𝐾 upper bound
value, we use a distributed sample sort algorithm [2]. For adaptive
graph compaction, we implement the distributed version of edge
swap-based and graph regeneration-based compaction techniques
as both are embarrassingly parallel tasks. For KSP computation on
the compacted graph, we map the two-level parallel strategy to
the distributed architecture. That is, the outer level job, i.e., one or
multiple SSSPs from each deviation vertex, will be mapped to one
computing node. The inner level job, i.e., the Δ-stepping algorithm,
will be mapped to multiple cores inside a computing node.

7 EXPERIMENT

7.1 Experimental Setup

We implement PeeK with over 5,000 lines of C++ code. PeeK is
compiled by GCC with O3 optimization level. We use OpenMP as
the multithreading library and OpenMPI as the message-passing
interface library. The single-machine experiments are performed
on a server with two Intel Xeon Silver 4309Y CPUs running Rocky
Linux 8.6. For distributed experiments, we run them on the servers
of Texas Advanced Computing Center (TACC) [4].

Graph benchmark.We evaluate PeeK on eight directed graphs
as shown in Table 1. Rmat21 (R21) [18] is a synthetic graph with
realistic degree distributions. Livejournal (LJ) [10] and GAP-twitter
(GT) [11] are social networks where vertices are users and edges are
the interactions. Wikipedia (WL) [46] contains Wikipedia articles
as vertices and wikilinks as directed edges. GAP-web (GW) [11] is
a web crawl of the .sk domain. Note that R21, LJ, and WL have no
edge weights on their original graphs. Therefore, we assign two
types of weights, one is a random floating number following normal
distributions in the range of (0, 1], and the other is 1 for R21U, LJU,
and WLU, respectively. For each graph benchmark, we randomly
select 32 pairs of source and reachable target vertices. We use the
same source and target pairs for PeeK and compared works.
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Table 2: Parallel runtime (s). Hyphen (-) denotes the test can-

not complete within 1 hour. The best performance of each

graph is highlighted. The speedup of PeeK over current best

is in parentheses. The column of × denotes average speedup.

R21 R21U LJ LJU WL WLU GW GT ×
K=8 Yen 5.3 4.6 13.7 5.8 36.8 24.4 105.7 239.3 6.8

NC 11.1 1.8 34 9.9 113.6 23.2 247.2 672.4 14.3
OptYen 3.6 1.9 11.3 4.2 34 19.6 82.9 186.3 5.1
PeeK 0.7 0.7 1.7 1.6 6.4 5.3 13 22.8

(5.1) (2.7) (6.5) (2.7) (5.3) (3.7) (6.4) (8.2)

K=128 Yen 68.3 61.2 196 44.1 337.1 93.6 174.8 2,168 56.7
NC 188.6 10.6 665 192 2,405 204.8 - - 170
OptYen 39.6 7.8 150 10.8 272.4 24.9 132.4 1,131 28.8
PeeK 0.8 0.7 2.5 1.6 6.9 5.4 13.6 23.1

(49.4) (11.5) (60.8) (6.6) (39.2) (4.7) (9.7) (48.9)

7.2 Parallel Performance Comparison

This experiment compares the parallel performance of PeeK with
OptYen, NC, and Yen. OptYen is the state-of-the-art parallel com-
putation method [5], NC is the node classification algorithm [25],
and Yen is the classical Yen’s algorithm [70]. They all use the Δ-
stepping algorithm for SSSP and implement the same two-level par-
allel strategies [5] by both concurrently running multiple SSSPs and
parallelizing each Δ-Stepping algorithm. We obtained the source
codes of Yen, NC, and OptYen from the authors of OptYen [5].

Table 2 summarizes the results of all the tested graphs for two
𝐾 values, i.e., a small value of 8, and a large value of 128. We use
both real runtime and speedup, which is calculated by the runtime
of other methods over PeeK. All the methods are running with 32
threads on the same machine. From that, we get three observations.

(i) PeeK significantly outperforms the compared methods on all
the tested graphs for both 𝐾 = 8 and 128. In particular, when 𝐾 = 8,
PeeK achieves 5.1×, 14.3×, and 6.8× speedup over OptYen, NC, and
Yen, respectively, on the average of all the graphs.

(ii) PeeK achieves more speedup for larger 𝐾 values. That is,
when 𝐾 = 128, PeeK achieves 28.8×, 170×, and 56.7× speedup over
OptYen, NC, and Yen, respectively. This is mainly due to our 𝐾
upper bound pruning technique, as the final KSP computation is
on the pruned graph, while other methods use the original graph.

(iii) NC performs worst for most of the graphs, especially for
large graphs with large 𝐾 values. This is mainly caused by the
dynamic update of the reverse shortest path tree, which is not a
good fit for parallel computation. Interestingly, OptYen’s simple
strategy of only using a static reverse shortest path tree works
much better in parallel settings. In particular, OptYen achieves 2.8×
and 5.9× speedup over NC for 𝑘 = 8, 128, respectively.

7.3 Serial Performance Comparison

This experiment compares the performance of PeeK with five al-
gorithms for serial execution using one thread. Besides the three
algorithms tested in parallel, i.e., OptYen, NC, and Yen, we also
compare PeeK with two other algorithms, i.e., SB and SB*. SB is
the Sidetracks-based (SB) algorithm [47]. SB* algorithm further im-
proves the time efficiency of the SB algorithm by reusing the previ-
ously computed SSSP tree [6, 7], while it takes additional space. We

Table 3: Serial runtime (s). Hyphen (-) denotes the test cannot

complete within 1 hour. The best performance of each graph

is highlighted. The speedup of PeeK over current best is in

parentheses. The column of × denotes average speedup.

R21 R21U LJ LJU WL WLU GW GT ×
K=8 Yen 30.6 19.4 100.6 12.1 203 44.4 158.4 1,994 7.7

NC 24.6 9.1 78 19.1 347.1 45 639.9 1,292 7.8
OptYen 7.4 3.8 39 5.9 68.9 23 113.3 224.3 2.2
SB 7.7 4.5 30.3 10.3 79.6 31.6 174.5 231.3 2.5
SB* 7.7 4.4 17.8 8.4 69.6 29.4 196 223.7 2.2
PeeK 3.5 3.1 7 5.6 26.3 18.6 56.5 115.4

(2.1) (1.2) (2.5) (1.05) (2.6) (1.2) (2) (1.9)

K=128 Yen 576.9 354 2,109 159.5 2,813 254.3 758.3 - 105.9
NC 421.6 120 1,791 215.1 - 1,238.6 - - 104
OptYen 44.8 8.7 353 14.2 347.4 29.3 187.9 - 12.4
SB 13.3 4.7 108.8 10.6 197.4 31.5 535.0 328.3 5.5
SB* 9.3 4.6 31.5 8.8 86.8 30.5 430.9 291.3 3.1
PeeK 3.5 3.1 7 5.7 26.5 18.6 58.3 118.1

(2.6) (1.5) (4.5) (1.5) (3.3) (1.6) (3.2) (2.5)

obtained the source codes from the authors of SB*. We did not com-
pare SB and SB* for parallel computation because we cannot find
any available implementations. We tried to implement by ourselves
but face the technical challenge of parallelizing a resumable SSSP
algorithm they used, which requires stopping at a certain status
and resuming when certain conditions are satisfied.

Table 3 summarizes the serial execution performance when
𝐾 = 8, 128, respectively. We can get three observations. (i) PeeK
outperforms all the other algorithms for serial execution. When
𝐾 = 8, it achieves 2.2×, 2.5×, and 2.2× speedup over SB*, SB, and
OptYen, respectively. It achieves more than 7× speedup over Yen
and NC algorithms. (ii) PeeK outperforms even more when 𝐾 be-
comes large. That is, when 𝐾 = 128, PeeK achieves 3.1×, 5.5×, and
12.4× speedup over SB*, SB, and OptYen, respectively. It achieves
over 100× speedup over Yen and NC. (iii) SB* is faster than OptYen,
especially for large 𝐾 values. That is, when 𝐾 = 128, SB* achieves
4× speedup over OptYen. The SB* algorithm avoids computing an
SSSP from scratch by reusing part of the previously computed SSSP.
However, when 𝐾 is small, e.g., 𝐾 = 8, their runtime is close.
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Figure 8: Benefits of the proposed techniques for 𝐾 = 8, 128.
The Y-axis is in the log scale.
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Figure 9: The scalability against thread count on a shared-memory system when 𝐾 = 8.
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Figure 10: The scalability against core count (16 cores per computing node) on a distributed-memory system when 𝐾 = 8.

7.4 Technique Benefits

This experiment studies the benefits of the proposed techniques
for parallel computation, i.e., 𝐾 upper bound pruning, and adaptive
graph compaction. In particular, we use a baseline of PeeK having
neither 𝐾 upper bound pruning nor adaptive graph compaction.

Figure 8 shows the relative speedup compared with the baseline
for 𝐾 = 8, 128. (i) Compared with the baseline, the 𝐾 upper bound
pruning technique achieves 4.9× and 16.8× speedup for 𝐾 = 8, 128,
respectively. Here, we use the original CSR with status arrays to
mark whether a vertex or edge has been pruned. Therefore, the
pruned vertices and edges are still in the original CSR, which can
lead to redundant computation especially when the kept graph
is relatively small. (ii) The adaptive graph compaction technique
addresses the issue from the status array. In particular, on top of
the 𝐾 upper bound pruning implementation, the adaptive graph
compaction technique adds another 1.5× and 33× speedup for 𝐾 =

8, 128, respectively. Together, both techniques can deliever 6.4× and
50× speedup for 𝐾 = 8, 128, respectively.

7.5 Scalability

Shared-memory scalability. This experiment studies the scala-
bility of PeeK against different thread counts in a shared-memory
system. Figure 9 shows the runtime speedup of different numbers
of threads over one thread for all the graphs and on average when
𝐾 = 8. One can observe that, PeeK shows a stable speedup increase
when the thread count also increases. In particular, compared with
one thread, PeeK with 32 threads achieves 4× speedup on average.
It achieves the highest speedup, 4.8× for graph GT, which is a large
graph with over 1 billion edges.

Distributed scalability. This experiment studies the scalabil-
ity of PeeK against different numbers of computing nodes in a
distributed-memory system. We did not compare with other meth-
ods as we were not able to find any available implementations for
distributed KSP. We use the number of giga-traversed edges per
second (GTEPS) as the metric for runtime, which measures both
communication capability and computational power. We scale PeeK
from 1 computing node to 64 and use 16 cores per computing node.
Figure 10 shows the speedup of using different numbers of cores
over 16 cores. One can see, the performance of PeeK stably im-
proves with the increase of computing nodes and cores. Compared
with 1 computing node (16 cores), PeeK achieves 30× speedup

when it is scaled to 64 computing nodes (1,024 cores) on average.
Particularly, with 1,024 cores, PeeK achieves 3.4 GTEPS on average.

7.6 Performance with Different 𝐾 Values

This experiment studies the performance of different 𝐾 values. Fig-
ure 11 shows the performance change when 𝐾 increases from 2 to
128. One can observe that PeeK outperforms the compared methods
for different 𝐾 values. More importantly, the larger the 𝐾 value,
the larger the performance gap becomes. This applies to all the
methods on the tested graphs as implied by the time complexity
𝑂 (𝐾𝑛(𝑚 + 𝑛 log𝑛)). However, PeeK shows a much smaller increas-
ing rate compared with other methods mainly due to the strong
pruning power from the 𝐾 upper bound pruning. In particular,
when increasing 𝐾 from 2 to 128 (i.e., 64×), the runtime of PeeK in-
creases by only 1.1×, while OptYen, NC, and Yen increase by 10.3×,
60.7×, and 18×, respectively. NC shows a dramatic increase rate
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Figure 12: The end-to-end runtime (s) of our adaptive graph

compaction method vs. Terrace against the change of the

remaining graph size for the Twitter (GT) graph.

mainly due to the high overhead caused by dynamically updating
the reverse shortest path tree and vertex colors.

7.7 Comparison with Dynamic Graph

Representation

This experiment studies the difference between our adaptive graph
compaction method and the dynamic graph update method. We
test one of the state-of-the-art dynamic graph update systems, i.e.,
Terrace [59], which can efficiently deal with the vertex/edge up-
date (insertion/deletion) for streaming graphs in parallel. It uses a
hierarchical data structure to store a vertex’s neighbors in different
data structures depending on the degree of the vertex. We measure
the end-to-end runtime performance against different numbers
of deleted vertices and edges. Here, we use the runtime of graph
update and downstream computation task SSSP as the end-to-end
performance. We use SSSP because (i) SSSP is one of the down-
stream computation tasks after graph update, (ii) Terrace does not
support KSP computation. We test on a Twitter (GT) graph. We
evaluate a different number of deleted edges by starting from only
keeping 0.001% percentage and increasing by 4 times.

Figure 12 shows the end-to-end performance. We can conclude
with three interesting observations. (i) The SSSP computation from
our implementation and Terrace are comparable. When all the
edges are kept (100%), the SSSP computation dominates the runtime.
From Figure 12, one can see their runtime is relatively the same.
(ii) PeeK outperforms Terrace significantly for end-to-end perfor-
mance. When only 0.001% vertices are kept, PeeK achieves 23,129×
speedup over Terrace. As the graph update for KSP computation
often requires pruning the majority of vertices/edges (discussed
in Section 4), we select the adaptive graph compaction method
instead of the dynamic graph update. (iii) However, we do notice
the performance of Terrace dramatically improves when the graph
update is fewer. One can see, when the number of remaining edges
increases to 65.53%, the speedup of PeeK over Terrace drops to 7×.

8 RELATED WORK

Wehave discussed Yen’s algorithm [70], node classification (NC) [25],
OptYen [5], Sidetracks-based (SB) [47], and parallel strategies [5, 63]
throughout the paper. This section will discuss other related works.

Postponed NC (PNC) [7] is a variant of NC algorithm. It tries
to further reduce the number of SSSP calls observing many of the
paths obtained from an expensive SSSP call may not become a
final candidate for the 𝐾 shortest paths. To avoid them, the PNC
algorithm temporally puts a non-simple candidate path for each

deviation vertex into the candidate set. When this non-simple can-
didate path is finally extracted, it will “repair” it by running SSSP.
Further, the authors of PNC further propose PNC* [7]. It computes
the SSSP algorithm on the subgraph only with the yellow vertices
instead of the whole graph in the PNC algorithm.

SB* algorithm improves the time efficiency of the SB algorithm
by reusing the previously computed SSSP tree [6, 7]. In particular,
to compute a new reverse SSSP tree𝑇𝑖+1, it creates a copy of𝑇𝑖 , and
recovers 𝑇𝑖 for the purpose of 𝑇𝑖+1 by removing the different ver-
tices and edges. The previously used SSSP algorithm can continue
the computation from the recovered tree of 𝑇𝑖 . This reduces the
duplicate SSSP computation for the same vertices and edges.

Parsimonious Sidetrack-based (PSB) algorithm and two variants
PSB-v2, PSB-v3 are proposed to reduce the large memory usage
of the SB algorithm [6, 7]. The key idea of PSB is to only store a
computed reverse SSSP tree after finding a useful subpath in that
tree. PSB-v2 defines a static threshold with the hope of predicting
whether a reverse SSSP tree will lead to a path that can become
one of the extracted candidates. With that, it only stores the SSSP
tree satisfying the threshold. PSB-v3 goes further by dynamically
changing the threshold during KSP computation.

Lawler proposed an optimization for Yen’s algorithm [49] by
reducing the number of SSSPs. Hershberger et al. improved the time
with Θ(𝑛) speedup, while it is not stable as replacement paths can
fail [34]. Gotthilf and Lewenstein improved the time complexity to
O(𝐾𝑛(𝑛 log log𝑛 +𝑚)) [30]. However, it requires the best all-pairs
shortest path (APSP) algorithm with O(𝑚𝑛 + 𝑛2 log log𝑛) using
Thorup’s component tree [65], which has not been implemented
for directed graph [25]. Sedeno-Noda [60] proposed a different
solution from Yen’s algorithm, but with the same time complexity.

Further, the idea of pruning unnecessary vertices and edges for
improving the performance can potentially benefit other graph
algorithms, e.g., connectivity algorithms [38, 43], centrality algo-
rithms [44], graph embedding algorithms [14, 19], and graph neural
networks [27, 32]. We would like to explore them in the future.

9 CONCLUSION

This paper devises PeeK, a new method for 𝐾 shortest path com-
putation with two new techniques, i.e., 𝐾 upper bound pruning,
and adaptive graph compaction. We also design efficient techniques
to parallelize and distribute PeeK. Compared with five other algo-
rithms, PeeK achieves 2.2× and 5.1× over state-of-the-art serial and
parallel methods, respectively, when 𝐾 = 8. More importantly, the
runtime of PeeK is barely affected by the increase of 𝐾 . That is,
when 𝐾 increases from 2 to 128 (64×), PeeK only increases 1.1×,
while the state-of-the-art method increases 10.3×.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION
The main contributions of this paper are three-fold. (i) We propose
a K upper bound pruning technique to prune the vertices and edges
that will not appear in any of the K shortest paths. In the artifact,
we first run the single source shortest path (SSSP) algorithm from
the source vertex to get the shortest paths from the source to all
the other vertices. Second, we run another SSSP to get the shortest
paths from all the other vertices to the target vertex. Finally, we
identify the K shortest valid paths.

(ii) We propose an adaptive graph compaction method between
edge swap and graph regeneration-based compaction methods. In
the artifact, edge swap-based graph compaction will modify the
original Compressed Sparse Row (CSR) by moving the deleted
neighbors of a vertex to the end so that the kept neighbors are
consecutive. Graph regeneration will produce a new CSR.

(iii) We parallelize the proposed method by classifying all the
jobs as data parallel, embarrassingly parallel, or task parallel jobs.
In the artifact, K upper bound pruning is mostly designed as a data
parallel job, the adaptive graph compaction is an embarrassingly
parallel job, and the KSP computation is a task parallel job.

REPRODUCIBILITY OF EXPERIMENTS

Table 1: The figures and tables that can be reproduced from
this artifact.

Figure/
Table Description Estimated

runtime (h)

Figure 1 Percentage of the covered vertices and edges against
different K values for a Twitter (GT) graph. 6

Figure 4 Percentage of pruned vertex and edge by K upper
bound pruning for eight graphs when K is 8 and 128. 1

Figure 6
The end-to-end performance of graph regeneration,
edge swap, and status array-based methods plus the
downstream KSP computation on the Twitter graph.

6

Figure 8 Benefits of the proposed techniques for K = 8, 128
with 32 threads. 3

Figure 9 Runtime (s) of different methods on various K
values from 2 to 128 and 32 threads. 3

Figure 10 The scalability against thread count on a
shared-memory system when K = 8. 4

Figure 11 The scalability against the number of cores
on a distributed-memory system when K = 8. 4

Table 2 Parallel runtime for 32 threads. 1

Table 3 Serial runtime. 4

We implemented a prototype, named PeeK. In this artifact, we
compile it with GCC 8.5.0, O3 optimization level. We use OpenMP
4.5 as the multithreading library, OpenMPI as the message-passing

interface library, and Boost 1.81.0 as the sorting library. The single-
machine experiments are performed on a server with two Intel Xeon
Silver 4309Y CPUs running Rocky Linux 8.6 and 512GB memory.
For distributed experiments, we run them on the servers of the
Texas Advanced Computing Center (TACC).

We evaluate PeeK on eight directed graphs and randomly select
32 pairs of source and reachable target vertices. We use the same
source and target pairs for PeeK and the compared works.

Table 1 summarizes the figures and tables used in our paper with
the estimated runtime. Particularly, the paper comes with 11 figures
and 3 tables, while Figure 2, Figure 3, Figure 5, Figure 7, and Table
1 are not related to the experiments.

ARTIFACT DEPENDENCIES REQUIREMENTS
None

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
None
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