
API2Vec: Learning Representations of API Sequences for Malware
Detection

Lei Cui∗
Zhongguancun Laboratory

Beijing, China
cuilei@iie.ac.cn

Jiancong Cui∗
School of Cyber Security University
of Chinese Academy of Sciences

Institute of Information Engineering
at Chinese Academy of Sciences

Beijing, China
cuijiancong@iie.ac.cn

Yuede Ji
University of North Texas

Texas, USA
yuede.ji@unt.edu

Zhiyu Hao†
Zhongguancun Laboratory

Beijing, China
haozy@zgclab.edu.cn

Lun Li
Institute of Information Engineering
at Chinese Academy of Sciences

Beijing, China
lilun@iie.ac.cn

Zhenquan Ding
Institute of Information Engineering
at Chinese Academy of Sciences

Beijing, China
dingzhenquan@iie.ac.cn

ABSTRACT
Analyzing malware based on API call sequence is an effective ap-
proach as the sequence reflects the dynamic execution behavior of
malware. Recent advancements in deep learning have led to the
application of these techniques for mining useful information from
API call sequences. However, these methods mainly operate on raw
sequences and may not effectively capture important information
especially for multi-process malware, mainly due to the API call
interleaving problem.

Motivated by that, this paper presents API2Vec, a graph based
API embedding method for malware detection. First, we build a
graph model to represent the raw sequence. In particular, we design
the temporal process graph (TPG) to model inter-process behavior
and temporal API graph (TAG) to model intra-process behavior.
With such graphs, we design a heuristic random walk algorithm
to generate a number of paths that can capture the fine-grained
malware behavior. By pre-training the paths using the Doc2Vec
model, we are able to generate the embeddings of paths and APIs,
which can further be used for malware detection. The experiments
on a real malware dataset demonstrate that API2Vec outperforms
the state-of-the-art embedding methods and detection methods for
both accuracy and robustness, especially for multi-process malware.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Soft-
ware security engineering.

∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598054

KEYWORDS
Malware Detection, Embedding, Deep Learning, Random Walk

ACM Reference Format:
Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding.
2023. API2Vec: Learning Representations of API Sequences for Malware
Detection. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.
3598054

1 INTRODUCTION
Malware refer to software that exhibit malicious activities, such
as, stealing private information, accessing unauthorized files, and
launching attacks [10, 14, 52, 54, 56, 62, 72]. The threats caused
by malware have been increasingly dramatically over the years.
According to McAfee, there were up to 688 malware threats per
minute observed in the first quarter of 2021 [64].

Because of that, malware detection methods are widely deployed
to protect the computing devices [47, 54]. Existing methods are
mainly classified into two types, i.e., signature-based and behavior-
based methods [12, 23, 65]. Signature-based methods usually build
a malware signature database by extracting a specific signature pat-
tern (e.g., hash) from known malware [6, 69]. Later, when detecting
an unknown software, it would extract its signature following the
same method, and match it against the database. Therefore, this
method is able to quickly detect known malware with a relatively
low false positive rate. However, it is less effective in detecting pre-
viously unknown threats, i.e., malware variants or new malware,
whose signature may vary a bit [18], thereby suffering high false
negatives [12, 51, 73]. Behavior-based detection methods actually
run the malware in an isolated environment [48] and extract use-
ful runtime behaviors, such as communication packets [16], API
calls [38, 51, 57], and system calls [39, 42, 55]. As a malware would
eventually perform some malicious activities, such as, communi-
cating with the controller, downloading additional malware, and
accessing privileged files, such behaviors would be able to distin-
guish malware from goodware. Following that, existing methods

261

https://doi.org/10.1145/3597926.3598054
https://doi.org/10.1145/3597926.3598054
https://doi.org/10.1145/3597926.3598054

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding

1. ...

2. [A] CreateProcess B

3. [A] ReadFile

4. [B] InternetOpenUrl

5. [B] InternetReadFile

6. [A] CreateProcess C

7. [C] VirtualAllocEx

8. [B] InternetReadFile

9. [B] WriteFile

10. [A] CopyFile

11. [C] ReadFile

12. [C] WriteVirtualMem

13. [A] ShellExecuteExA

14. ...

1. ...

2. [A] CreateProcess B

3. [A] ReadFile

4. [B] InternetOpenUrl

5. [B] InternetReadFile

6. [A] CreateProcess C

7. [B] InternetReadFile

8. [C] VirtualAllocEx

9. [C] ReadFile

10. [B] WriteFile

11. [A] CopyFile

12. [C] WriteVirtualMem

13. [A] ShellExecuteExA

14. ...

(a) Execution logic (b) API call sequences (c) Graph model

 Parent Process A:

1. ...

2. CreateProcess B

3. ReadFile

4. CreateProcess C

5. CopyFile

6. ShellExecuteExA

7. ...

TPG

 A1: CreateProcess
 A2: ReadFile
 A3: CopyFile
 A4: ShellExecuteExA

A2 A3

A1

A4

 B1: InternetOpenUr
 B2: InternetReadFile
 B3: WriteFile

B1 B3

B2

 C1: VirtualAllocEx
 C2: ReadFile
 C3: WriteVirtualMem

C1 C3

C2

 Child Process B:

1. ...

2. InternetOpenUrl

3. InternetReadFile

4. WriteFile

5. ...

 Child Process C:

1. ...

2. VirtualAllocEx

3. ReadFile

4. WriteVirtualMem

5. ...

 TAG - A

 TAG - B TAG - C

Figure 1: A multi-process malware and its arbitrary API call sequences. a) shows its execution logic. b) shows two sequences of
the same malware yet traced at different epochs. c) depicts our graph model, which is robust against various sequences.

usually apply machine learning (ML) methods or deep learning
(DL) methods to perform malware detection [27, 68].

1.1 Motivation
API call sequence is one common way to reflect the run-time behav-
ior of a program and has been widely applied in existing malware
detectionmethods [21, 24, 68, 77]. In particular, Gibert et al. [29] and
Fan et al. [26] extract features from API call sequences, and apply
MLmethods (e.g., random forest and gradient boosting) for malware
detection. Tran et al. [67] regard the API call sequences as corpus
and build a malware detection model with natural language pro-
cessing (NLP) techniques (e.g., n-gram and term frequency-inverse
document frequency). Further, various DL-based methods (e.g., con-
volutional neural network and long short-term memory) have been
applied to the API call sequences for malware detection [74, 77].

However, it is observed that modern malware often utilizes multi-
process mechanisms. In a real-world malware dataset containing
14,657 samples from VirusTotal [66], over 60% of them use multi-
ple processes, with some even launching up to 69 processes. The
use of multi-process has several purposes, such as improving effi-
ciency or evading detection [61]. Whatever, malware can distribute
its behaviors, thus the corresponding API calls, to different pro-
cesses [13, 22, 28, 34]. Thus, API calls from different processes can
interleave with others due to designated execution logic and CPU
scheduling, resulting in an API call sequence with arbitrary or-
ders [25, 35], which we name as API interleaving problem. This
makes the existing malware detection methods that directly apply
techniques to learn features from raw sequences inaccurate, as
the raw sequences can be obfuscated by the multi-process mecha-
nism [28]. Therefore, learning on raw API call sequences directly
is a significant limitation.

Figure 1 presents an example of a multi-process malware, where
a) shows the execution logic of one multi-process malware. Specif-
ically, the main process 𝐴 forks two child processes 𝐵 and 𝐶 that
perform different tasks. 𝐵 is responsible for downloading an ex-
ecutable remotely, which is launched by 𝐴 later, while 𝐶 aims to
inject code into another process. Logically, 𝐴 depends on 𝐵 since it
requires the executable of 𝐵. 𝐶 is independent and thus executes
concurrently with 𝐴 or 𝐵. As a result, the API call sequence traced
by the sandbox is with arbitrary orders. Also, due to the scheduling

of 𝐶 , two sequences traced at different time may vary, as shown
in b). Thus, the execution logic is hidden (obfuscated) due to the
interleaved API calls and hard to be revealed with existing methods.

1.2 Our Method
We design API2Vec, a graph based API embedding method for
malware detection. The main idea is to first use graph modeling to
uncover the obfuscated behaviors before implementing detection
techniques. More specifically, given the sequence of API calls, we
first group the calls based on the processes who initiated them. Then,
we build a temporal process graph (TPG) for the whole sequence,
where a node denotes a process and an edge denotes the parent-
child or child-child relationship. Further, for the APIs inside one
process, a temporal API graph (TAG) is built, where a node denotes
an API and an edge denotes the happen-before relationship, as
shown in Fig. 1(c). Such a representation is able to capture the
behaviors of each process and also crossing multiple processes.

With such graphs, we design a heuristic random walk algorithm
to mine a number of representative paths. It will traverse the whole
TPG and TAGs following 9 behavior and coverage-oriented rules,
with the aim to capture more fine-grained malware behavior. By
walking inside a TAG, a path is able to accurately capture the intra-
process behavior following the execution logic of a single process.
Meanwhile, by walking inside the TPG (i.e., across TAGs), the inter-
process behavior can also be revealed.

With a corpus of generated paths, we employ Doc2Vec [44] to
vectorize the paths. The main advantage of Doc2Vec over com-
monly used Word2Vec is that it encodes the path (i.e. a set of API
calls) as well as a single API at the same time, so that the semantic
relationships between different APIs and paths are learned. Since
the sequence here is represented by a set of paths, Doc2Vec is natu-
rally suitable for malware analysis. Once the API embedding and
paths are available, the ML or DL based methods can be used to
perform malware detection.

On a dataset with 14,657 Windows PE malware and 14,113 good-
ware, where 9,210 and 4,363 are multi-process, respectively, a simple
𝑘-NN model with API2Vec achieves 3.47% and 4.78% improvement
for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 over Node2Vec, respectively. Not limited,
it achieves better performance when the number of processes in-
creases. This clearly demonstrates the effectiveness of API2Vec. In

262

API2Vec: Learning Representations of API Sequences for Malware Detection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

TPG

TAG

Graph ModelAPI Calls Embeddings

TPG walking

TAG walking

Path Generator

Rules

Graphs Paths

1. C1-C2-C3

2. A1-B1-B2-B3-A4

3. A1-C1-C2-C3

A2 A3

A1

A4

B1 B3

B2

C1 C3

C2

API Embedding Malware Detector

Figure 2: Overview of API2Vec. For the sequence in Fig. 1, one TPG and three TAGs are generated with Graph Model. Then,
with Path Generator on graphs, several paths are generated. These paths are then feed into API Embedding module to generate
embedding for each path. Finally, the ML models learn on these embeddings for malware detection.

addition, API2Vec is shown to be more robust to both adversarial
attacks and concept drift challenges compared with other works.

To summarize, this paper makes three major contributions.

• Graph-based API sequence representation.We design tem-
poral process graph and temporal API graph to accurately model
the intra-process and inter-process behavior (§4).

• Behavior and coverage-oriented heuristic random walk.
We devise a heuristic random walk algorithm inspired by pro-
gram behaviors and path coverage (§5). It is able to extract fine-
grained behavior and mine more inherent relationships between
the nodes from a graph, with fewer paths.

• Extensive evaluation. We have conducted extensive evalua-
tions on a real malware dataset (§7) The results have shown
the effectiveness of API2Vec against multi-process malware, and
robustness to concept drift and adversarial attacks..

2 THREAT MODEL AND ASSUMPTIONS
In this paper, we mainly focus on the detection of Portable Ex-
ecutable (PE) malware in Windows, which widely affects a large
amount of users [7]. The studied malware types include downloader,
grayware, worm, backdoor, virus, and rogueware, as will be shown
in evaluation (Section 7). We believe our method is generic and
can be easily extended to other types, especially for multi-process
malware.

We use Cuckoo, a popular sandbox to record the runtime activity
of a program, to trace API call sequence of malware [1]. We assume
that the sandbox could successfully trace the API calls involved
in malicious behaviors, which is a standard threat model for dy-
namic malware analysis [40, 41, 43]. We assume a malware can
run smoothly without being blocked or disturbed by the operating
system or other protection software in the sandbox. Meanwhile,
each malware runs for two minutes, which is sufficient to enable
malicious behaviors observed in recent studies [43].

3 PROPOSED APPROACH
3.1 Approach Overview
As stated before, both intra- and inter-process behaviors are not
clearly exposed in the raw sequence due to the API interleaving
problem. To address this challenge, we first design a graph model to
distinguish the operations within processes meanwhile characteriz-
ing interactions between processes. Then, we design an algorithm
to capture the intra- and inter-process behaviors. In particular, our
proposed API2Vec includes four main components (Fig. 2).

1) Graph model aims to accurately characterize behaviors of
each process and behaviors crossing multiple processes. Specifi-
cally, it represents raw API sequence with a directed multi-graph,
consisting of a TPG and multiple TAGs. TPG models inter-process
behavior, where the node denotes a process and the edge denotes
the parent-child or child-child relationship between nodes. TAG is
corresponded to one process and models the intra-process behavior.
Its node denotes an API and the edge denotes the happen-before
relationship between APIs.

2) Path generator generates paths on top of graphs, each of
which represents fine-grained program behavior with a set of con-
secutive API calls. One straightforward method is to traverse the
graphs, but this would lead to path explosion problem due to the
generally large , leading to massive paths. Therefore, Path Genera-
tor employs random walk to address the path explosion problem.
The random walk on a TAG mines behavior inside a single process,
e.g., Path 1 in Fig. 2,

3) API embedding utilizes a neural network model to learn
representations of paths and APIs from a large corpus of paths,
so that the paths and APIs are expressed by vectors of numerical
representations. As the path generator has represented raw API
sequence as multiple paths, we then apply the idea of Doc2Vec
[44] from natural language processing to learn the embedding of
each path. Doc2Vec here not only vectorizes the APIs but also the
paths, unlike the widely used Word2Vec model that only vectorizes
APIs. Therefore, Doc2Vec fits better to our purpose. By employing
Doc2Vec on a large corpus of paths, both the paths and APIs are
represented by 64-dimensional embeddings, where semantically
similar paths (or APIs) will be placed closer.

4)Malware detector takes the embeddings of API call sequences
as inputs and builds a ML model for malware detection. Specifically,
given a set of API call sequences, they will be converted to a corpus
of embedding following the previous three components. During the
training process, we further divide the training data into training
and validation to search the optimal parameters for ML models,
e.g., 𝑘 of 𝑘-nearest neighbors (𝑘-NN). During the inference process,
an API call sequence will be processed by the four components and
eventually classified as malware or goodware.

3.2 Case Study
We present a case study to compare API2Vec with raw sequences
and demonstrate how API2Vec captures the intra- and inter-process
behaviors. We believe this is the key to improve the performance
of detecting malware, especially for multi-process malware.

263

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding

C ReadFile

B InternetReadFile

B InternetOpenUrl

Piece 1

(b) Slided Pieces

A CreateProcess

A ReadFile

A CreateProcess

Piece 2

B WriteFile

A CopyFile

C WriteVirtualMem

A ShellExecuteExA

...
[A] CreateProcess B

[A] ReadFile

[B] InternetOpenUrl

[B] InternetReadFile

[A] CreateProcess C

[B] InternetReadFile

[C] VirtualAllocEx

[C] ReadFile

[B] WriteFile

[A] CopyFile

[C] WriteVirtualMem

[A] ShellExecuteExA

...

(a) Raw Sequence

Figure 3: Operation on raw sequences.

3.2.1 Raw Sequence. For the API sequence example in Fig. 1a), if
the sequence is separately used, then the intra-process behavior
will be learnt easily. However, the inter-process behavior will not be
captured since the API call groups are separated. We then examine
the performance of two types of methods that operate directly on
the raw sequence, as shown in Fig. 3a) (i.e., the left sequence in Fig.
1b)). The first type of methods learn directly on the entire sequence
each time, e.g., long short-term memory (LSTM) networks. They
have shown good ability mainly due to the capability of learning
long-term dependencies. Unfortunately, on the API call sequences
that are blended themselves, their learning ability would be com-
promised. The other type learns on small pieces of sequence within
a window, e.g., n-gram, convolutional neural network for text (Text-
CNN). For this type, we set the window size to 5 and examine two
sample pieces as shown in Fig. 3b).

Piece 1. For this piece, the model can probably infer that process
𝐴 created two processes, of which process 𝐵 involves url access and
file downloading operations. However, it is difficult for the model to
understand the intention of process 𝐴, which is actually exhibited
by ShellExecuteExA lying out of the window.

Piece 2. For this sample, the model would understand that the
program created a file and then executed it, but has no way of
knowing where the file came from. It is known that downloading
payloads remotely is one common operation of malware, which is
very important for identifying malware.

From these samples, it can be seen that it is difficult to accurately
reveal the program intention from the raw sequences.

3.2.2 API2Vec. As shown in Fig. 4a) (i.e., the graph in Fig. 1c)), it
represents the raw sequence with graphs, i.e., one TPG and several
TAGs. From the graphs, we examine three sample paths.

Path 1, generated by walking in TAG-C as depicted by the green
arrows. It precisely describes the behavior of 𝐶 , i.e., copying data
into a newly allocated memory area, which fits process injection.

Path 2, generated bywalking over TAG-A and TAG-B as depicted
by the red arrows, concatenates API calls from process 𝐴 and 𝐵.
It can more clearly expose the behavior that process 𝐴 creates 𝐵
to download a file remotely and then executes the file, which is
valuable for learning its intention. Note that this behavior is difficult
to be revealed from the raw sequence.

Path 3, generated by walking over TAG-A and TAG-C as de-
scribed by the blue arrows, demonstrates that process𝐶 is launched
by𝐴. Note that process 𝐵 and𝐶 are not in parent-child relationship,

C2 ReadFile

Path 1
C1 VirtualAllocEx

A1 CreateProcess

Path 2

B1 InternetOpenUrl

B2 InternetReadFile

B3 WriteFile

A4 ShellExecuteExA

Path 3

(a) Graphs (b) Generated Paths

A4 A1

A2

A3

B1 B3

B2

A4 A1

A2

A3

B1 B3

B2

C1 C3

C2
TAG-A

TAG-B
A1 CreateProcess

C3 WriteVirtualMem

C2 ReadFile

C1 VirtualAllocEx

TAG-C

TPG

C3 WriteVirtualMem

Figure 4: Operation with API2Vec.

thus, no edge exists between TAG-B and TAG-C in TPG. Conse-
quently, there is no path where 𝐵 and 𝐶 are interleaved with each
other, thereby excluding paths whose behaviors are obfuscated.

From these samples, it can be seen that API2Vec helps reveal the
intra-process behavior (TAG) and inter-process behavior (TPG) of
program more accurately, which is valuable for malware detection.

3.3 Key Challenges
We identify three key challenges in the implementation of API2Vec.

C1: Modelling temporal and frequency information. The
sequence of API calls are not only related logically, but also follows
temporal order, i.e., one API occurs after another. In addition, an
API can be called repeatedly, which will lead to the number of APIs
far fewer than the called times. Therefore, the graph model should
be able to represent both temporal and frequency information.

C2: Traversing on hierarchical and multi-graph. The gen-
erated graph is hierarchical because the relationship between the
processes and APIs is hierarchical, i.e., a process can call multiple
APIs. Further, the graph is a multi-graph because there exists mul-
tiple edges between two APIs as they might be called at different
time. Therefore, one needs to design a graph traversing method
that is able to traverse on both hierarchical and multi-graph.

C3: Behavior-aware path generation. Since we will use the
paths for API embedding, the generated paths need to capture both
the intra- and inter-process behaviors. Therefore, one needs to
design a path generation method following program behavior.

We will detail how we address these challenges as follows.

4 TEMPORAL GRAPHS
We first introduce the concept of logical time, a key attribute in our
graph model. Then, we detail the definition of TAG and TPG.

4.1 Logical Time
An API call sequence shows the temporal execution order of the
APIs called by a program. Thatmeans, if an API𝑎 is ahead of another
API 𝑏 in the sequence, then 𝑎 is called earlier than 𝑏. Note that, this
does not mean 𝑎 calls 𝑏 because the caller-callee relationship can
not be revealed from the API call sequence. As the temporal API call
sequence captures the fine-grained execution behavior, it becomes
rather important for malware analysis.

We use logical time, denoted by𝑇 , to describe the temporal order
of API calls. In particular,𝑇 follows the temporal order of API calls in
the whole sequence. It starts from 0 and is monotonically increasing

264

API2Vec: Learning Representations of API Sequences for Malware Detection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

by 1 until the last API call. Thus, each API call is associated with a
logical time to denote its order in the sequence.

4.2 Temporal API Graph
Each TAG is associated with one single process. Let 𝑆 denote the
API call sequence of the process, the associated TAG is formalized
by ⟨𝑉 , 𝐸,𝐴⟩.𝑉 denotes the vertex set, represented by the APIs inside
a process, and each vertex 𝑣 ∈ 𝑉 denotes a specific API. 𝐸 denotes
the edge set, where each edge 𝑒 ∈ 𝐸 refers to the temporal order
of two vertices. If an API 𝑣𝑑 is executed immediately after 𝑣𝑠 , then
there exists a directed edge 𝑒𝑠𝑑 from 𝑣𝑠 to 𝑣𝑑 . We observe there
might be multiple edges between two APIs happening at different
time. Therefore, we use a multi-graph to represent a TAG, where
there can be multiple edges between two vertices.

Of the edges, we use the logical time as the attribute to differ-
entiate them, where the attribute set is denoted as 𝐴 and logical
time set is denoted as 𝑇 . Specifically, let 𝑒 j

𝑠𝑑
denote the 𝑗-th edge

between two vertices 𝑣𝑠 and 𝑣𝑑 , its attribute is expressed by a pair
of logical time of two vertices, i.e., 𝑎j

𝑠𝑑
= {𝑡 j𝑠 , 𝑡

j
𝑑
}.

The steps of building a TAG are as follows. First, the logical time
is labelled for each API call in the whole sequence, it started from 0
and increases monotonically by 1. Then, the API calls of the same
process are grouped. In each group, the first API will be directly
added into the TAG as a vertex. Afterwards, the next call is checked
whether the associated API is already in the TAG. If not, the API
will be added as a new vertex. Then, an edge is attached from the
previous API to it and assigned with the associated logical time.
This step will execute repeatedly until the sequence traversal is
complete, thereby building the TAG for the process.

4.3 Temporal Process Graph
A temporal process graph (TPG) characterizes the whole API call
sequence of a program. TPG is formalized by ⟨𝑃𝑉 , 𝑃𝐸, 𝑃𝐴⟩. Here,
𝑃𝑉 denotes the vertices of TPG, and each vertex is a TAG, as shown
in Figure 1(c). 𝑃𝐸 refers to the directed edges between TAGs. Here,
there exist two types of edges. First, parent-child edge, which ap-
pears when the associated processes of two TAGs are in a parent-
child relationship, i.e., one process forks another. It can reveal the
process interaction relationship. Second, child-child edge, which
appears when API calls of two non-parent-child processes are adja-
cent to each other. While process interleaving is usually attributed
to CPU scheduling, some child processes may interact with each
other to carry out malicious behavior. This means that causal re-
lationships may exist between these edges, which would be lost if
the edges were removed. Therefore, to uncover these hidden inter-
actions between two processes, we model the child-child edge in
our graph model. Similar to TAG, TPG is also a multi-graph where
there exist multiple edges between two vertices. If an API of 𝑝𝑣𝑠 is
adjacent to another API of 𝑝𝑣𝑑 , then there is an edge 𝑝𝑒𝑠𝑑 from 𝑝𝑣𝑠
to 𝑝𝑣𝑑 . 𝑃𝐴 denotes the attributes of each edge. Similar to TAG, it is
expressed by a pair of the logical time of two TAG vertices, whose
associated API calls are adjacent.

We build the TPG out of the whole API sequence following three
steps. First, we build TAGs and represent each TAG as a vertex in
the TPG. Then, if two TAGs share adjacent API calls, we denote it as
an edge labelled with either parent-child or child-child relationship.

In this way, the topology of TPG is completed. Finally, for any two
API calls that are adjacent in the sequence but across TAGs, an edge
is added between the two TAGs accordingly whose attribute is a
pair of logical time of the two API calls.

4.4 Discussion
The proposed graph representations brings many benefits. 1) The
graph model is robust against various API call sequences from the
same program. Therefore, it can be more accurately characterize the
program behavior. 2) TAG can exclude the unexpectedly interleaved
API calls caused by CPU scheduling since it groups the calls of a
single process. 3) TAG expresses the consecutive API calls that
have repeatedly appeared in the form of rings. This enables a lot of
redundant calls (or behaviors) to be excluded by properly walking
these rings. 4) TPG is able to reveal the inter-process behavior
as it can help to glue APIs across two TAGs that are in a parent-
child relationship. 5) The graph can be traversed directionally rather
than blindly (§5) since the edge attributes denote the happen-before
relationship.

5 HEURISTIC RANDOMWALK
5.1 Basic Idea of Heuristic RandomWalk
5.1.1 Justification of Heuristic Rules. To effectively capture the
essential information, we employ random walk to extract paths (i.e.,
a set of associated APIs) from graphs meanwhile solving the path
explosion problem. The naïve random walk, using algorithms such
as BFS or DFS, is effective for graphs that showcase spatial structure
and are non-hierarchical [20, 31]. However, they perform poorly
on our hierarchical and temporal graphs (§7.5). Thus, we need a
suitable algorithm that can reveal more fine-grained behaviors with
fewer paths by walking on our graphs. To this end, we design 9
heuristic rules to guide the random walk, which fall into three cat-
egories. 1) Affinity-oriented rules. Malware often launch actions
such as self-propagation and process injection, which are repre-
sented in short pieces of associated API calls. This inspires us to
generate paths based on API affinity (2 rules). 2) Behavior-oriented
rules. Our graph model characterizes intra-process behavior with
TAG and inter-process behavior with TPG. Given that a node in
graph has many neighbors and there exist multiple edges between
two nodes, the walk should follow the program execution to reveal
the correct behavior. Hence, we design 5 rules to enable the walk
to follow the chronological and logical order of APIs both inside
a TAG and across TAGs. 3) Coverage-oriented rules. Some APIs
appear frequently in sequences, making the corresponding node
a hub in the graph, which further constrains the walk. We design
2 coverage-oriented rules to overcome this issue for discovering
more paths and exposing diverse behaviors.

5.1.2 Overflow of Heuristic Random Walk. The proposed graph
model is a hierarchical graph, i.e., the node of TPG is TAG, which
itself is also a graph with APIs as nodes. Upon such a graph, the
heuristic random walk first walks over the TPG, selects a node (i.e.,
TAG) and then walks on this TAG. After TAG walking is over, it
then turns to another TAG and continues walking. More specifically,
it traverses the whole graph 𝐼 times (𝐼 = 10 by default to reveal
more behaviors) and generates 𝐼 · 𝑁 paths, where 𝑁 is the total

265

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding

number of vertices in TAGs. For each vertex in a TAG, a walker
is forked to generate one path for this round of walking. In each
round, a current walking epoch 𝑡𝑐 is initiated to record the elapsed
time of the current walker. It helps to determine the next vertex
and indicates whether the walker needs to terminate. Meanwhile,
a global path corresponded to the current walker is initiated. Then,
the walker starts walking inside the TAG from 𝑣𝑠 and generates
a path following rules in §5.2, which will be concatenated to the
global path. After one TAG walking is completed, the walker will
find another TAG with TPG walking to continue TAG walking,
as will be detailed in §5.3. Once TPG walking is completed, the
generated global path will be put into to a corpus for embedding.

5.2 RandomWalk inside TAG
The random walk inside TAG aims to mine the behaviors inside
a single process. It starts with the currently visiting vertex 𝑣𝑠 at
the logical time 𝑡𝑐 , repeatedly searches for the next appropriate
vertex and appends it to the path, and stops exploring until some
conditions are met. Finally, it outputs a path. We tend to answer
four research questions upon random walk: 1) which vertex should
be selected as the next vertex (vertex selection), 2) which edge of the
multiple edges between two vertices will be used (edge selection),
3) when is the walk completed (end conditions), 4) how to return
back to the TPG (Return to TPG mechanism).

5.2.1 Vertex Selection. For a currently visiting vertex 𝑣𝑠 , all of its
neighbor vertices are candidates for walking. Vertices that have a
maximum logical time smaller than the current walking epoch 𝑡𝑐
expire and are therefore excluded. Of the remaining vertices, the
selection as the destination vertex follows three heuristic rules.

Rule 1: More edges suggests higher priority (affinity-oriented). A
vertex sharing more edges with 𝑣𝑠 implies that these two vertices
have a strong affinity in performing actions. Therefore, it is more
likely to be selected.

Rule 2: Smaller time span denotes higher priority (behavior-
oriented). Time span denotes the minimum difference between the
logical time of vertex 𝑣𝑖 and the walking epoch 𝑡𝑐 . A smaller value
implies that 𝑣𝑖 will be called soon and more likely to be selected.

Rule 3: More visits suggests lower priority (coverage-oriented).
A vertex that is frequently visited may denote a hub in the graph.
As a result, higher priority will be given to vertices that have been
visited less frequently, in order to improve behavior coverage.

With these rules, for a candidate vertex 𝑣𝑖 , let 𝑓𝑖 denote the
number of edges between 𝑣𝑠 and 𝑣𝑖 , 𝑇𝑆𝑖 denote the time span set
for 𝑣𝑖 and the time span for the 𝑗th edge is calculated by 𝑡 j

𝑖
− 𝑡𝑐 , 𝑛𝑖

denote the number of visits. Then, the walking probability of 𝑣𝑖 , i.e.,
𝑃𝑖 , is calculated by 𝑓𝑖/(

√︁
𝑚𝑖𝑛(𝑇𝑆𝑖) +

√
𝑛𝑖). Note that the minimum

time span, denoted as𝑚𝑖𝑛(𝑇𝑆𝑖), could be much larger than 𝑓𝑖 , e.g.,
the average value of 𝑓𝑖 in our dataset is about 4, while𝑚𝑖𝑛(𝑇𝑆𝑖)
reach dozens or hundreds. In addition, 𝑛𝑖 may also reach dozens
as the random walk proceeds. Therefore, we use the square root
of𝑚𝑖𝑛(𝑇𝑆𝑖) and 𝑛𝑖 to enable the effect of 𝑓𝑖 upon vertex selection.
After the probabilities of all candidates are available, the destination
vertex is selected following the probability distribution.

5.2.2 Edge Selection. A TAG is a directed multi-graph. Thus, once
the destination vertex is selected, the next step is to select an edge.

Given that the attribute of an edge is the logical time of vertices,
the edge selection is based on the following rule.

Rule 4: Smaller time span denotes higher priority (behavior-
oriented). Fine-grained intra-process behaviors are generally ex-
posed within a short time. Thus, the edge with smaller time span
indicates close chronological relationships betweenAPIs and should
be selected with high probability.

For the 𝑗th edge between 𝑣𝑠 and 𝑣𝑑 , the probability of being
selected is calculated by 1/(𝑇𝑆 𝑗

𝑑
) where 𝑇𝑆 𝑗

𝑑
denote its time span.

5.2.3 End Condition. The walker will terminate walking in the
current TAG and jump to another TAG for the following cases.

Case 1: No candidate vertex is available. If the logical time of the
neighbors have expired (i.e., greater than 𝑡𝑐), or R2P (Return to
TPG) is required (§5.2.4), then there will be no available candidate
vertex. Therefore, the TAG walking will be terminated.

Case 2: The length of currently walked path reaches a pre-defined
threshold. We use 𝐿 to denote the threshold, which is related to
the number of edges in a TAG and is set to 100 by default in our
experiment. The limitation on length enables to generate many
short and diverse paths, thereby covering more potential behaviors.
Meanwhile, a large number of repeated API calls can be excluded.

5.2.4 Return to TPG Mechanism. Return to TPG (R2P) allows the
walker to jump to another TAG to continue walking, which helps
capture the potential inter-process behavior. It is employed when
all the neighbor vertices cannot be viewed as candidates. The prob-
ability of a vertex not selected as a candidate follows two rules.

Rule 5: Larger time span denotes higher probability (behavior-
oriented). A much larger value implies that the two associated API
calls are interrupted by multiple API calls from another process,
mainly because of two cases. First, there exists interaction between
the two processes. For this case, the two API calls and the calls
from another process together represent the whole execution be-
havior. Thus, the walker should jump to another process to capture
the complete behaviors. Second, the two APIs are actually called
continuously but disrupted by CPU scheduling. As a result, the
API calls between them are irrelevant, so that the associated pro-
cess is less likely to be touched. To distinguish them, we observe
that the CPU scheduling is more arbitrary while the interaction is
relatively deterministic. Thus, if there exists only one edge with
large time span, it belongs to CPU scheduling. Otherwise, it belongs
to process interaction. The probability for this rule is computed
by 𝑃𝑖1 = 𝑚𝑖𝑛(𝑇𝑆𝑖) ∗ 𝛼/(𝑚𝑖𝑛(𝑇𝑆𝑖) + 𝐿). Here, 𝐿 is used to avoid
excessively use of R2P. 𝛼 is a hyper parameter, it is set to 1 for the
first case to inspire R2P, and 0.3 for the second case to avoid R2P.

Rule 6: A much larger number of visits suggests higher probability
(coverage-oriented). A much larger value means the associated API
is called repeatedly during program execution. We observe the
malware may call sensitive APIs, which are failed frequently but
will be called repeatedly, such as RegEnumValueW, StartServiceW,
and FindWindowW. Observed that a lot of repeated paths will
not improve performance, the walker is likely to explore paths
in another TAG when experiencing lots of visits. Let 𝑛𝑖 denote
the number of visits, we employ min-max scaling to compute the
probability of R2P for Rule 6, i.e., 𝑃𝑖2 = (𝑛𝑖 −𝑛𝑚𝑖𝑛)/(𝑛𝑚𝑎𝑥 −𝑛𝑚𝑖𝑛).

266

API2Vec: Learning Representations of API Sequences for Malware Detection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

With these two rules in mind, the probability that a candidate
vertex is not visited is computed by 𝑃𝑖1 + 𝑃𝑖2 − 𝑃𝑖1 · 𝑃𝑖2. Then, we
randomly filter neighbor vertices following probability distribution.
Once all the neighbors are excluded, the walker terminates walking
in current TAG and turns to TPG walking.

5.3 RandomWalk inside TPG
TPG walking is launched when R2P is required or walking inside a
TAG is completed. It aims to find another TAG to continue walking.
Similar to TAG walking, it first determines a TPG vertex, and then
chooses an edge to pinpoint the start vertex in the selected TAG.

5.3.1 Vertex Selection. For a TPG vertex 𝑝𝑣𝑠 , the neighbor vertex
whose maximum logical time smaller than 𝑡𝑐 will be excluded first.
Then, for a candidate 𝑝𝑣𝑖 , it is selected following the rules below.

Rule 7: Child TAG is preferred (behavior-oriented). A process
generally hasmore interactionswith its child process than its sibling
process, which results in more inter-process behaviors. As a result,
the child TAG is more likely to be explored by the walker.

Rule 8: More edges suggest higher priority (affinity-oriented).
Inter-process behaviors encompass operations across processes and
are represented by edges between TAGs in our graph. Thus, the
TAG with more edges is favored for uncovering these behaviors.

Rule 9: Smaller time span denotes higher priority (behavior-
oriented). Similar to rule 4, a smaller time span implies that the
API call of a candidate TAG is more chronologically closer to the
currently visited API. Thus, the operations of two TAGs may be
highly correlated and involved in inter-process behavior.

Let 𝑓𝑖 denote the number of edges between 𝑝𝑣𝑠 and 𝑝𝑣𝑖 ,𝑚𝑖𝑛(𝑇𝑆𝑖)
denote the minimum time span of edges, the probability that 𝑝𝑣𝑖 is
selected is 𝑓𝑖 · 𝛽/𝑚𝑖𝑛(𝑇𝑆𝑖). Here, 𝛽 is a parameter to determine the
priority of a vertex, i.e., 1 for child vertex and 0.3 for others.

5.3.2 TAG Start Vertex Selection. Once the destination TAG 𝑝𝑣𝑑
is determined, the next step is to choose a vertex in 𝑝𝑣𝑑 where the
walker starts from. Generally, a vertex 𝑣𝑖 in 𝑝𝑣𝑑 that is neighbor
to 𝑣𝑠 in 𝑝𝑣𝑠 is a candidate. However, there may not exist an edge
between 𝑣𝑠 and 𝑣𝑖 , because the existence of edges between two
TAGs does not necessarily guarantee that there exist edges between
two vertices distributed over TAGs. For this case, we add a virtual
edge from 𝑣𝑠 in 𝑝𝑣𝑠 to 𝑣𝑖 in 𝑝𝑣𝑑 , and assign it with attribute {𝑡𝑠 , 𝑡𝑖 },
where 𝑡𝑠 denotes the current logical time of 𝑣𝑠 and 𝑡𝑖 refers to as
the minimum logical time of 𝑣𝑖 . Then, the probability that 𝑣𝑖 serves
as the start vertex of the TAG is computed by 𝑓𝑖/𝑚𝑖𝑛(𝑇𝑆𝑖).

5.3.3 End Condition. If the logical time of any TPG node is smaller
than 𝑡𝑐 , the walker should terminate. Otherwise, the walker will
find another available TPG node to continue walking.

6 LEARNING TASKS
On a corpus of paths generated in §5, we then perform two inde-
pendent learning tasks, API Embedding and Malware Detection.

API Embedding. API Embedding utilizes a DL model to learn
representations of paths and APIs from a large corpus of paths, so
that the paths and APIs are expressed by vectorized embedding.
We apply Doc2Vec [44] to learn the embedding of each path and
API, which is represented by a 64-dimensional vector.

Specifically, let 𝑃 denote the set of paths. For the 𝑖-th path 𝑝𝑖 and
one API 𝑝 j

𝑖
in 𝑝𝑖 , we first fetch the context APIs within a window

of size 𝐶 , denoted by 𝛿 = {𝑝 j-Ci , · · · , 𝑝
j-1
i , 𝑝

j+1
i , · · · , 𝑝

j+C
i }. Then, 𝑝 ji

is represented by the embedding of 𝑝𝑖 and APIs in 𝛿 , i.e., 𝐸 (𝑝 𝑗
𝑖
) =

𝑊 · 1
2𝐶+1

(
𝐸 (𝑝𝑖) +

∑
𝑘∈𝛿 𝐸 (𝑝𝑘𝑖)

)
, where 𝐸 (∗) denotes the embedding

of API or path, and𝑊 indicates the weight matrix upon learning.
The object is to find embedding 𝐸 for minimizing the objective
function, which is the average negative log-likelihood of each API in
all paths, denoted by− 1

𝑁𝑝

∑𝑁𝑝

𝑖=0
1

𝑁𝑝𝑖

∑𝑁𝑝𝑖

𝑗=0 𝑙𝑜𝑔P(𝑝 𝑗
𝑖
|𝛿, 𝑝𝑖), where𝑁𝑝

denotes the size of 𝑃 , 𝑁𝑝𝑖 denotes the length of 𝑝𝑖 , and P indicates
the probability of context APIs in a path given the current API 𝑝 𝑗

𝑖
.

Malware Detection. API2Vec first encodes the API call se-
quence with the pre-trained path embeddings. Since a sequence
yields multiple paths, it is represented by the average value of 64-
dimensional embeddings of all paths extracted from the sequence,
following other graph embedding methods [8, 20, 60]. In this way,
it is not sensitive to the order of vectors of paths. Then, on these
encoded sequences, we setup three MLmodels, i.e., 𝑘-NN, SVM, and
RF, to train a binary classifier for malware detection. During the in-
ference process, the sequence will be encoded into a 64-dimensional
embedding and then classified as malware or goodware.

7 EVALUATION
We implement API2Vec on Ubuntu (20.04.2) with Python 3.7.We use
the Cuckoo sandbox to trace programs to acquire API call sequences,
and employ NetworkX(2.6.3) library to manage the graph. After
a corpus of paths are available, we perform two learning tasks
with Google Colab [30]. For API embedding, we use the Gensim
package(4.1.2) to deploy Doc2Vec on these paths. The Doc2Vec
model is set up with epochs to 10, window size to 5, and embedding
size to 64. For malware detection, we setup 𝑘-NN, SVM, and RF to
train binary classifiers. We evaluate API2Vec with an emphasis on
answering the following research questions:

RQ1.What is the ability of API2Vec in malware detection (§7.2)?
Here, the ability mainly refers to the precision, recall and F1-score.

RQ2. Is API2Vec robust to the concept drift problem [76] for
correctly identifying newly appeared malware (§7.3)?

RQ3. Is API2Vec robust to adversarial malware attacks (§7.4)?
RQ4. Is the proposed components effective in enhancing the

performance of API2Vec (§7.5)?
RQ5. Is the runtime overhead of API2Vec low enough to make

it efficient and suitable for practical scenarios (§7.6)?

7.1 Experimental Setup
7.1.1 Dataset. We notice that some malware dataset are publicly
available, e.g., [11, 15, 37, 49, 75]. However, they suffer several
problems and thus are not appropriate for dynamic analysis based
malware detection, e.g., static features only [11, 37], goodware are
missing [15], malware cannot be executed [49], or size is small [75].
In addition, we tend to evaluate API2Vec in terms of concept drift,
which requires diverse malware over a long period. To this end, we
prepare a dataset ourselves, which consists of 14,657 malware from
VirusSign [3] and 14,113 goodware from NSRL [2]. Then, we use
Cuckoo to trace the API call sequence of each sample for 2 minutes.
We exclude short sequences (length ≤ 10) in which the malicious

267

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding

behavior are unlikely to lie, following the commonly used method
inmany studies [63]. Finally, the dataset consists of 28,684 programs
(each is with its API call sequence), of which 14,653 are malware
(spanning 13 malware types) and 14,031 are goodware. The average
length of sequence is 412 for malware and 463 for goodware. Unless
specified, we use randomly selected 70% of programs as the training
set and the remaining 30% as the testing set.

7.1.2 ComparedMethods. API2Vec proposes an embeddingmethod
for malware detection. Thus, we compare it with two types of works.

First, embeddingmethods. 1)Word2Vec [50], a classical model
in NLP. Here, it learns the API embedding from a set of sequences.
2) DeepWalk [60], a graph-based embedding that learns latent rep-
resentations of vertices. Here, we employ the random algorithm of
DeepWalk on our graphs. 3) Node2Vec [31], a graph-based embed-
ding that uses novel random walk algorithms with Breadth-First
Search (BFS) and Depth-First-Search (DFS). We deploy Node2Vec on
our graph and name them Node2VecB and Node2VecD respectively.
Once the embeddings of APIs are available, we setup ML models
for malware detection, as performed in API2Vec.

Second, malware detection methods. 1) API frequency his-
togram (Frequency for short) [53], encodes the sequence by vectoriz-
ing the API frequency and then uses similarity-basedML algorithms
for malware detection. Here, we use 𝑘-NN upon reproduction. 2)
API sequence Markov chain(Markov) [9], constructs cluster tran-
sition matrix for goodware and malware and uses the maximum
likelihood accumulated transition value to compute the malicious-
ness of a sample. 3) BiLSTM-based method (BiLSTM) [77], encodes
each API call with run-time parameters and then uses Gated-CNN
and BiLSTM to detect malware. 4) A variant of BiLSTM (vBiLSTM),
first groups API calls by process and then performs BiLSTM on
each subgroup. 5) Bert and fastText model (API-Bert) [74], excludes
redundant API calls from the sequence, and then employs Bert
and fastText respectively for malware detection. 6) API sequence
intrinsic features (API-SIF) [46], models API call sequences with
semantic chains and uses BiLSTM for detection. 7) DMalNet [45],
concatenates features of API calls and arguments, builds a call graph
following the order of API calls, and employs graph neural network
for detection. 8) CruParamer [17], encodes API calls and runtime
parameters together and then applies DNNs for malware detection.

Metrics.We compare the performance of these methods in terms
of i) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 that denotes the fraction of true malware (i.e., true
positives or TP in short) among the predicted malware, ii) 𝑟𝑒𝑐𝑎𝑙𝑙
that refers to as the fraction of true malware that were retrieved,
and iii) f1-score that is the harmonic mean of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 ,
where f1-score = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙).

7.2 Malware Detection Ability (RQ1)
We first evaluate these methods on the whole dataset to provide
an overall comparison. Then, we evaluate them on multi-process
programs where more interactions exist among processes.

7.2.1 Performance on the Whole Dataset. Table 1 compares the
results of different models. For embedding methods, the results of
SVM and RF are comparable with𝐾-NN (aswill be detailed in §7.5.2),
therefore, we mainly report the results of𝐾-NN. As can be seen, our
proposed API2Vec achieves the best performance. E.g., it reaches

Table 1: Performance comparison on malware detection.

Model TP FN TN FP precision recall f1-Score

Word2Vec 4,202 194 4,040 169 96.13% 95.59% 95.86%
DeepWalk 4,181 215 4,017 192 95.61% 95.11% 95.36%
Node2VecB 4,179 217 4,024 185 95.76% 95.06% 95.41%
Node2VecD 4,178 218 4,030 179 95.89% 95.04% 95.46%

Frequency 4,188 208 4,028 181 95.86% 95.27% 95.56%
Markov 2,429 1,967 2,960 1,249 66.04% 55.25% 60.17%
BiLSTM 4,233 163 4,146 63 98.53% 96.29% 97.40%
vBiLSTM 4,181 215 3,976 233 94.72% 95.11% 94.91%
API-Bert 4,044 352 3,756 453 89.93% 91.99% 90.95%
API-SIF 4,187 209 3,992 217 95.07% 95.25% 95.16%
DMalNet 4,178 218 3,972 237 94.63% 95.04% 94.84%
CruParamer 4,053 343 4,010 199 95.32% 92.20% 93.73%

API2Vec 4,389 7 4,175 34 99.23% 99.84% 99.54%

up to 99.23% of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 99.84% of 𝑟𝑒𝑐𝑎𝑙𝑙 , 3.10% and 4.25%
higher thanWord2Vec, 0.7% and 3.55% higher than BiLSTM, proving
the effectiveness of the proposed methods.Note that Word2Vec
outperforms DeepWalk and Node2Vec, both of which are graph-
basedmodels. The reason is as follows. DeepWalk and Node2Vec are
designed for spatial graphs and pay more attention to the structural
information of the graph. However, in our graph model, logical
time is one important attribute to guide the walking direction. In
addition, both TAG and TPG are directed multi-graph so that a node
can be visited multiple times. Therefore, DeepWalk and Node2Vec
fail to learn from our temporal graphs.

BiLSTM, as a DL-based method, performs better than the other
compared methods. However, it is still worse than our proposed
API2Vec, e.g., 97.4% compared to 99.54% in term of f1-score. Note
that API2Vec trains the malware detector with 𝑘-NN, which is much
simpler than BiLSTM. This suggests that our embedding method
contributes a lot to the performance improvement. vBiLSTM ex-
tends BiLSTM by grouping API calls of the same process first, with
the aim of better capturing the intra-process behavior. Despite
this intention, it performs worse than BiLSTM that learns directly
from raw sequences. This is due to the fact that grouping the API
calls results in a loss of inter-process behavior information, which
hurts the detection performance. Note that CruParamer performs
worse than BiLSTM, which is opposite to the results reported in
their paper [17]. We suspect that this is due to the limited coverage
(only 35.24%) of parameters in our dataset by the rules used in
CruParamer, which hurts API embedding based on parameter sen-
sitivity and consequently the detection performance. The Markov
method performs poorly on our dataset, i.e., only 60.17% of f1-score,
similar to the result in another study [70]. We suspect that the
reason is as follows. Markov clusters 1,165 APIs for constructing
the transition matrix. Yet in our dataset, the number of unique
APIs is small, i.e., 49, which compromises clustering and transition
construction, thereby hurting the detection performance.

7.2.2 Performance on Multi-process Programs. API2Vec aims to
solve the API interleaving problem occurred in multi-process pro-
grams. Therefore, we evaluate API2Vec in a testing dataset com-
posed of 4,091 multi-process samples (2,782 malware and 1,309
goodware). As can be seen in Table 2, as the number of processes
(#Proc) increases, the compared models exhibit an overall decreas-
ing performance. E.g., Word2Vec reaches 98.44% of f1-score when

268

API2Vec: Learning Representations of API Sequences for Malware Detection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 2: F1-score on multi-process programs.

#Proc 2 3 4 5 ≥6
Word2Vec 97.04% 98.44% 94.97% 98.39% 96.92%
DeepWalk 96.57% 98.44% 95.13% 97.56% 96.97%
Node2VecB 96.78% 98.57% 94.82% 96.72% 96.97%
Node2VecD 96.78% 98.27% 94.67% 97.56% 96.18%

Frequency 96.83% 98.48% 95.19% 98.39% 96.06%
Markov 68.08% 79.61% 70.73% 80.37% 88.52%
BiLSTM 97.91% 99.39% 95.89% 99.20% 99.22%
vBiLSTM 96.75% 98.53% 89.02% 97.56% 96.92%
API-Bert 91.82% 97.34% 90.52% 99.20% 96.24%
API-SIF 96.68% 98.66% 90.80% 100.00% 97.60%
DMalNet 96.05% 98.15% 91.83% 99.20% 96.88%
CruParamer 95.01% 98.36% 91.59% 96.72% 98.46%

API2Vec 99.57% 99.87% 99.85% 100.00% 99.22%

#Proc is 3, yet decreases to 96.92% when #Proc ≥ 6. The reason is
as follows. The raw sequence consists of interleaved API calls from
different processes, and becomes more chaotic as the number of
processes increases. Such a sequence leads to obfuscated program
behavior, thereby furthers compromising the learning ability of
Word2Vec which learns the representation of APIs from the raw
sequence.

As expected, our API2Vec gains much better performance than
the other models. For example, it reaches up to 99.22% of f1-score
when analyzing malware with more than 5 processes, only experi-
encing a slight drop. We contribute the improvement to the graph
model, which could more accurately characterize the inter-process
behavior. More specifically, for a malware with more processes, the
TPG model characterizes the parent-child and child-child relation-
ship between processes (or TAGs) with edges. Upon TPGwalking, it
prefers to walk a child process, since the two processes together are
more inclined to complete a certain task. Consequently, the inter-
process behavior is more easily to be revealed. Although DeepWalk
and Node2Vec are built on our graph model, they cannot accurately
reveal the behavior across processes. API-Bert and API-SIF utilize
multiple DL models for malware detection, e.g., Word2Vec, CNN,
and BiLSTM for API-SIF. However, it remains challenging for these
models to differentiate between inter-process and intra-process
behavior from raw sequences, leading to sub-optimal performance.

7.3 Robustness to Concept Drift (RQ2)
Concept drift appears when new sample appear over time, caus-
ing the trained model to mispredict the new one [36, 58, 71]. We
evaluate the robustness of models on two types of data.

7.3.1 New Malware that Appear in a New Year. We train a binary-
classifier on samples (7,479 malware and 4,835 goodware) spanning
from 2009 to 2018 in our dataset, and then measure its performance
on testing samples in 2019 (247 malware and 183 goodware) and
2020 (575 malware and 265 goodware), respectively.

As shown in Table 3, the compared models experience perfor-
mance drop with the time. E.g., the f1-score of BiLSTM decreases
from 89.08% of 2019 to 83.35% of 2020, i.e., a 5.63% drop. This is
mainly because i) malware variants are deployed with new tech-
niques and ii) new malware families appear over time. Despite that,
API2Vec still achieves high performance in detecting these new
malware, i.e., 98.59% and 99.13%, respectively, demonstrating that it

Table 3: F1-score on samples from varying years.

Model 2019 2020 Model 2019 2020

Word2Vec 86.46% 80.04% vBiLSTM 89.08% 83.35%
DeepWalk 81.82% 78.66% API-Bert 84.25% 83.95%
Node2VecD 82.64% 77.62% API-SIF 87.65% 85.94%
Node2VecB 82.50% 77.58% DMalNet 89.64% 86.78%
Frequency 80.51% 88.95% CruParamer 86.02% 91.43%
Markov 77.12% 51.82 API2Vec 98.59% 99.13%
BiLSTM 86.02% 91.43%

Table 4: F1-score on samples from varying types.

Type virus backdoor worm grayware downloader

Word2Vec 88.45% 95.87% 93.39% 91.28% 97.03%
DeppWalk 77.72% 95.17% 93.39% 87.50% 96.50%
Node2VecB 77.90% 95.51% 93.54% 90.65% 96.40%
Node2VecD 77.95% 94.99% 93.63% 87.16% 96.54%

Frequency 91.79% 93.07% 81.83% 85.65% 96.11%
Markov 74.66% 71.83% 75.31% 67.65% 69.25%
BiLSTM 86.23% 75.55% 96.46% 92.81% 96.95%
vBiLSTM 90.98% 96.31% 93.24% 90.13% 95.46%
API-Bert 84.71% 93.29% 91.87% 81.49% 92.73%
API-SIF 88.24% 96.91% 88.89% 87.83% 95.59%
DMalNet 82.46% 96.12% 87.33% 85.09% 95.03%
CruParamer 90.98% 96.31% 93.24% 90.13% 95.46%

API2Vec 99.24% 99.49% 99.25% 99.15% 99.41%

is robust to concept drift. This is mainly owing to the graph model.
More concretely, although new variants of malware show different
syntax from the previous one, they are behaviorally identical. Since
our graph model exhibits well invariance regardless of the order of
API calls, it could reveal these behavior accurately. Consequently,
the generated paths representing the behaviors of a new variant
are highly similar to those of the previous malware.

7.3.2 Malware of New Type. This type involves malware from a
new type that was not appeared in the training dataset. We use one
type of malware as the testing set, and other types for training. The
numbers of testing malware are as follows, virus (984), backdoor
(1,675), worm (2,464), grayware (3,904), downloader (4,193).

As reported in Table 4, a model performs differently for various
types of malware. E.g., DeepWalk achieves 93.39% of f1-score for
worm, while only 77.72% for virus. In contrast, API2Vec performs
well on all these types, i.e., larger than 99%. The reason is as follows.
Although different types of malware exhibit various behaviors, they
share many common fine-grained operations, e.g., downloading
files, remote control, etc. Compared to existing methods, API2Vec
can capture these fine-grained behaviors more accurately with the
graph model and heuristic random walk. Thus, it provides better
generalization ability when detecting malware of new types than
other methods, and thus exhibits well robustness to concept drift.

7.4 Robustness to Adversarial Attacks (RQ3)
Recently, several adversarial attacks are proposed against malware
detection models [33, 59]. We employ the attack method from [33]
to perturb malware samples in the testing dataset. The method
generates API sequences pieces and inserts them into an origi-
nal malware sequence,𝑚, to produce an adversarial sequence,𝑚∗,
which aims to minimize the predicted malicious probability on𝑚∗

269

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding

Table 5: Performance on detecting adversarial samples.

Model rate Model rate Model rate

Word2Vec 62.49% Frequency 70.79% API-Bert 49.00%
DeepWalk 67.13% Markov 70.06% API-SIF 67.63%
Node2VecB 66.47% BiLSTM 55.16% DMalNet 71.77%
Node2VecD 66.54% vBiLSTM 59.90% CruParamer 75.86%

API2Vec 97.38%

Table 6: Performance of various learning models.

Word2Vec Doc2Vec
Model precision recall f1-score precision recall f1-score

SVM 87.33% 89.08% 88.20% 99.16% 99.25% 99.20%
RF 96.75% 92.08% 94.36% 99.47% 99.04% 99.26%
𝑘-NN 94.70% 94.29% 94.49% 99.23% 99.84% 99.54%

for recurrent neural network (RNN) models. Finally, we obtain 4,396
adversarial samples and predict them with the trained detectors.

Let detection rate be the ratio of the number of successfully de-
tected adversarial examples to the total number (i.e., 4,396), higher
detection rate denotes better robustness. As shown in Table 5,
API2Vec shows better robustness to adversarial attacks, with a de-
tection rate of 97.38%. In other words, of 4,396 adversarial malware
samples, API2Vec successfully identifies 4,281, which is 1,330, 1,856,
and 1,126 more than DeepWalk, BiLSTM, and DMalNet, respec-
tively. We contribute the improvement to the fine-grained behav-
iors extracted from the graph model, which are relatively invariant.
Specifically, the adversarial attack perturbs the raw sequences by
carefully inserting API calls to alter its syntax and semantics. How-
ever, the proposed random walk algorithm in API2Vec employs
many heuristic rules, which are related to the number of nodes,
number of edges, and logical time. Therefore, the generated paths,
which represent fine-grained behavior, are not easily comprised
unless a large amount of API calls are inserted, which yet violates
the principle of minimal perturbations. DMalNet also utilizes graph
to model the API call relationship. However, it mainly focuses on
the sequential execution of APIs and discards the inter-process
relationship, leading to inferior performance compared to API2Vec.

7.5 Ablation Study (RQ4)
7.5.1 The Gain of Proposed Components. The key components
of API2Vec are the graph model and the random walk algorithm
following three categories of heuristic rules. Thus, we setup the
following models to measure the gain of proposed methods. 1)
Sequence, the baseline method that performs Doc2Vec on raw se-
quences directly. 2) Graph, it uses our graphs yet is configured with
naïve random walk. 3) Graph+Affinity (𝐺∗), it walks with 2 affinity
rules, which are basic rules to guide the direction. 4) 𝐺∗+Coverage,
it extends 𝐺∗ with 2 coverage-oriented rules. 5) 𝐺∗+Behavior, it
extends 𝐺∗ with 5 behavior-oriented rules. 6) API2Vec, it uses all
rules.

As reported in Figure 5, each component brings a performance
boost, i.e., the graph model imposes 0.67% improvement, and the
heuristic rules improve 4.08% further, in f1-score. Specifically, com-
pared to Sequence (94.79%), Graph achieves 95.46%, implying that
the proposed graph model brings 0.67% improvement. With two

S e q u e n c e G r a p h (G) G + A f f i n i t y (G *) G * + C o v e r a g e G * + B e h a v i o r A P I 2 V e c
0 . 9 2
0 . 9 3
0 . 9 4
0 . 9 5
0 . 9 6
0 . 9 7
0 . 9 8
0 . 9 9
1 . 0 0 P r e c i s i o n R e c a l l F 1 - S c o r e

Figure 5: Performance of proposed components.

basic rules, Graph+Affinity improves Graph by 2.87%, proving
the effectiveness of heuristic rules upon walk. Furthermore, when
coverage- or behavior-oriented rules are added, f1-score is further
improved by 0.29% and 0.99%, respectively. Note that behavior-
oriented rules contribute more, because they aim to reveal the
intra- and inter-process behavior more accurately while coverage-
oriented rules seek to generate more diverse paths. Finally, with all
rules, API2Vec reaches up to 99.54% of f1-score, achieving a total of
4.75% improvement compared to the baseline model.

7.5.2 Various Learning Models. API2Vec uses Doc2Vec to pre-train
the path embeddings, and employs SVM, RF and 𝑘-NN to train
the malware detector. Hence, we compare Doc2Vec against the
commonly used Word2Vec model upon embedding, and evaluate
the detector when cooperated with various ML models. As shown
in Table 6, Doc2Vec performs much better than Word2Vec, e.g.,
99.54% compared to 94.49% in f1-score. This is because Doc2Vec
encodes not only APIs but also paths which is helpful to represent
the concept of paths, while in contrast, Word2Vec only encodes
APIs. In addition, the three ML models with Doc2Vec perform well
and closely, e.g., 99.20%, 99.26%, and 99.54% in f1-score, respectively,
demonstrating the effectiveness of the proposed path embedding.

7.6 Runtime Overhead (RQ5)
The time overhead of API2Vec comes from four parts, i.e., graph
building, path generation, API embedding, and detection. We per-
form the experiments on a Ubuntu(20.04.2 LTS) server with 22-core
Intel(R) Xeon(R) CPU E5-2690 2.60GHz and 300 GBs of RAM. The av-
erage processing time per sequence is 77.56ms, 107.76ms, 62.35ms,
and 0.2ms respectively for the four parts, taking a total time of
247.87ms for one sequence. In comparison, it takes 71ms, 71ms,
35.7ms, 101.6ms, 19ms, 187.4ms, 223.4ms, and 198.35ms to process
one sequence for Frequency, Markov, BiLSTM, vBiLSTM, API-Bert,
API-SIF, DMalNet, and CruParamer, respectively. AlthoughAPI2Vec
takes relatively more time, the 247.87ms detection time is relatively
modest considering that it typically takes 2 minutes to obtain the
API call sequence through sandbox. Thus, we believe that API2Vec
is feasible for malware detection in practical scenarios.

7.7 Case Studies
We provide two examples of real-world malware that are detected
by API2Vec but not by other models to illustrate its effectiveness.

270

API2Vec: Learning Representations of API Sequences for Malware Detection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

7.7.1 Sample 1 [4]. The main process𝑀 sets hooks and drops sev-
eral executables, from which two processes, 𝐴 and 𝐵, are launched.
𝐴 probes and gathers environmental information, while 𝐵 down-
loads payload from a remote site. Although the two processes exe-
cute independently, their API calls are highly interleaved. E.g., a
call VirtualAllocEx of 𝐵 is logically preceded by CreateMutexW
and followed by CreateRemoteThread of 𝐵, but is now interfered by
multiple RegQueryValueExW of 𝐴. Thus, existing methods fail to
accurately identify intra-process behavior of 𝐵. API2Vec overcomes
this limitation by grouping together APIs of the same process, and
linking𝑀 and𝐴,𝑀 and 𝐵, respectively. This enables successful rev-
elation of the behaviors between processes from generated paths.
E.g., it can capture a path from the setting of hooks by𝑀 to infor-
mation collection of and data storing performed by 𝐴.

7.7.2 Sample 2 [5]. The main process𝑀 creates two processes 𝐴
and 𝐵, where 𝐴 further creates a child process 𝐴1. 𝐴 probes the en-
vironments and then clears 𝐴1 after it has enumerated the modules
in memory. 𝐵 simply drop several executables and involves only
a few API calls. Existing methods fail to detect the sample mainly
due to the long sequence issued by 𝐴1, which consists of multiple
repetitive sequences, e.g., several calls of ReadProcessMemory (ac-
counting for 64.5% of the sequence) followed by WriteFile. API2Vec
overcomes this challenge by designing coverage-oriented rules.
This approach allows for more paths to be generated, thereby ex-
posing diverse behaviors, without being limited by the constraints
imposed by a single node (e.g., ReadProcessMemory in this sample).

8 RELATEDWORK
Many studies perform malware analysis on sequences of API calls.
Ki et al. [38] view the raw sequence of API calls as DNA of malware,
and then employ DNA sequence comparison to extract the API
call pattern. These patterns help detect currently known malware
and discover previously unknown malware. Daht et al. [19] divide
the system API call sequence into triples with n-grams, and then
use logistic regression and shallow neural network for malware
classification. Hansen et al. [32] convert the malware sequence into
a feature vector, mainly including APIs, the API frequency. Then,
they leverage information entropy on the feature vector to classify
malware. Kim et at. [39] use n-gram and TF-IDF to generate features
of system calls, and employ SVM for malware detection.

Many recent studies employ DL in malware detection. Rosenberg
et al. [63] divide the raw API sequence into several sub-sequences
and detect each of them with RNN respectively. Chen et al. [17]
represent the API calls by the API along with varying degrees of
sensitivity. And, on the encoded sequences of API calls, malware
classifiers are trained with TextCNN and Bi-LSTM. Yesir et al. [74]
present API-Bert, which employs Fasttext and BERT to learn the
embeddings of APIs. The experimental results show that DL model
performs well in malware detection.

Instead of directly operating raw sequences, some studies repre-
sent API calls with graphs and then performing analysis with graph
algorithms. E.g., Zhang et al. [76] build API relationship Graph by
parsing the Android API documents and design knowledge graph
embedding algorithm to learn the representation of APIs, which are
applied to malware detection models. Elhadi, et al. [24] extracts the
data dependency relationship from the raw sequence and build API

graph. Then, they employ longest common subsequence to perform
graph matching, which is further used for malware detection. Ding,
et al. [21] use the data dependency to build a behavior graph and
then detect malware with graph matching.

Ourmethod is inspired by these studies. However, it is different in
many aspects. First, our graph model consists of two graphs to char-
acterize intra and inter-process behavior respectively. Meanwhile,
we assign edges with temporal attributes, which are important to
describe the process behavior. In contrast, existing methods build
graphs with the spatial relationship on APIs. Second, we design
several heuristic rules upon walking, so that the paths can reveal
diverse fine-grained behaviors. Although DeepWalk and Node2Vec
design randomwalk algorithms, they are more focused on the struc-
tural information of graphs and are not suitable for our temporal
graph. Third, we encode these paths instead of APIs, which is differ-
ent from many DL-based methods that directly employ Word2Vec
or Bert to generate embeddings of APIs.

9 LIMITATION AND DISCUSSION
We conducted API2Vec three independent times and obtained a
total of 16 false negatives (FN). We manually investigated them and
summarized following reasons. 1) Repeated benign paths (9 FN).
The presence of multiple edges between neighboring APIs results in
a number of repeated paths during random walk. Meanwhile, these
paths represent benign operations. Thus, benign semantics con-
tribute more in generating embeddings, thereby evading detection.
2) Many processes with simple, repeated actions (2 FN). Similar to
the first reason, this results in a stronger emphasis on benign se-
mantics in the embeddings, making it harder to detect. We suspect
that these 11 samples employ evasion techniques by incorporating
meaningless API calls. 3) Short and simple sequences (5 FN). These
samples have short sequences, i.e., less than 50, far less than the
average length of 412. Of them, 2 samples terminated early before
exhibiting further malicious behavior and 3 used neutral APIs but
passed with sensitive parameters. We will explore techniques (e.g.,
excluding redundant paths, using run-time parameters) to address
these problems in the future.

10 CONCLUSION
This paper presents API2Vec, a graph based API embedding method
for malware detection. The main advantages of API2Vec over ex-
isting embedding methods lie in two aspects. That is, the graph
model is invariant and is able to capture the intra- and inter-process
behaviors more concisely and accurately. Meanwhile, the heuristic
random walk algorithm follows the temporal order of nodes with
several behavior and coverage-oriented rules. Therefore, it is able
to mine many diverse and fine-grained behaviors. The results show
that API2Vec outperforms state-of-the-arts in malware detection,
and is robust to adversarial attacks and concept drifts.

ACKNOWLEDGMENT
This work is supported by the National Natural Science Foundation
of China (61972392, 6207245). Yuede Ji is supported by University
of North Texas. We would like to express our deepest gratitude to
Xiaohui Chen, Yiran Zhu, and Runhan Song for their invaluable
comments and assistance throughout our experiments.

271

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding

REFERENCES
[1] 2022. Cuckoo Sandbox. Website. https://cuckoosandbox.org/.
[2] 2022. NIST: National Institute of Standards and Technology. Website. https:

//www.nist.gov/.
[3] 2022. VirusSign Incorporation. Website. https://www.virussign.com.
[4] 2023. VirusTotal reports. Website. https://www.virustotal.com/gui/file/

bd49943e2db92d09287923b159b111c33f3374344cf39109aebaa81fc2cd16e0.
[5] 2023. VirusTotal reports. Website. https://www.virustotal.com/gui/file/

d9ba27e5554c95350ca0800051d6eca19251c3a8d98662b2b7afbc06e8ead9a6.
[6] Muhamed Fauzi Bin Abbas and Thambipillai Srikanthan. 2017. Low-complexity

signature-based malware detection for IoT devices. In International Conference
on Applications and Techniques in Information Security. Springer, 181–189. https:
//doi.org/10.1007/978-981-10-5421-1_15

[7] Faraz Ahmed, Haider Hameed, M Zubair Shafiq, and Muddassar Farooq. 2009.
Using spatio-temporal information in API calls with machine learning algorithms
for malware detection. In Proceedings of the 2nd ACM Workshop on Security and
Artificial Intelligence. 55–62. https://doi.org/10.1145/1654988.1655003

[8] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-
erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018). https://doi.org/10.48550/arXiv.1808.01400

[9] Eslam Amer and Ivan Zelinka. 2020. A dynamic windows malware detection
and prediction method based on contextual understanding of api call sequence.
Computers & Security 92 (2020), 101760. https://doi.org/10.1016/j.cose.2020.
101760

[10] Eslam Amer, Ivan Zelinka, and Shaker El-Sappagh. 2021. A Multi-Perspective
malware detection approach through behavioral fusion of API call sequence.
Computers & Security 110 (2021), 102449. https://doi.org/10.1016/j.cose.2021.
102449

[11] H. S. Anderson and P. Roth. 2018. EMBER: An Open Dataset for Training Static
PE Malware Machine Learning Models. ArXiv e-prints (April 2018). https:
//doi.org/10.48550/arXiv.1804.04637 arXiv:1804.04637 [cs.CR]

[12] Ömer Aslan Aslan and Refik Samet. 2020. A comprehensive review on malware
detection approaches. IEEE Access 8 (2020), 6249–6271. https://doi.org/10.1109/
ACCESS.2019.2963724

[13] Seyyed Mojtaba Bidoki, Saeed Jalili, and Asghar Tajoddin. 2017. PbMMD: A
novel policy based multi-process malware detection. Engineering Applications of
Artificial Intelligence 60 (2017), 57–70. https://doi.org/10.1016/j.engappai.2016.12.
008

[14] Ross Brewer. 2016. Ransomware attacks: detection, prevention and cure. Network
Security 2016, 9 (2016), 5–9. https://doi.org/10.1016/S1353-4858(16)30086-1

[15] Ferhat Ozgur Catak, Javed Ahmed, Kevser Sahinbas, and Zahid Hussain Khand.
2021. Data augmentation based malware detection using convolutional neural
networks. PeerJ Computer Science 7 (Jan. 2021), e346. https://doi.org/10.7717/
peerj-cs.346

[16] Patrick Shicheng Chen, Shu-Chiung Lin, and Chien-Hsing Sun. 2015. Simple and
effective method for detecting abnormal internet behaviors of mobile devices.
Information Sciences 321 (2015), 193–204. https://doi.org/10.1016/j.ins.2015.04.035

[17] Xiaohui Chen, Zhiyu Hao, Lun Li, Lei Cui, Yiran Zhu, Zhenquan Ding, and Yongji
Liu. 2022. CruParamer: Learning on Parameter-Augmented API Sequences for
Malware Detection. IEEE Transactions on Information Forensics and Security 17
(2022), 788–803. https://doi.org/10.1109/TIFS.2022.3152360

[18] John Cloonan. 2019. AdvancedMalware Detection – Signatures vs. Behavior Anal-
ysis. https://www.cyberdefensemagazine.com/advanced-malware-detection/

[19] George EDahl, JackW Stokes, et al. 2013. Large-scale malware classification using
random projections and neural networks. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 3422–3426. https://doi.org/10.
1109/ICASSP.2013.6638293

[20] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 472–489. https://doi.org/10.1109/SP.2019.00003

[21] Yuxin Ding, Xiaoling Xia, Sheng Chen, and Ye Li. 2018. A malware detection
method based on family behavior graph. Computers & Security 73 (2018), 73–86.
https://doi.org/10.1016/j.cose.2017.10.007

[22] Daniele Cono D’Elia, Lorenzo Invidia, and Leonardo Querzoni. 2021. Rope:
Covert multi-process malware execution with return-oriented programming.
In European Symposium on Research in Computer Security. 197–217. https:
//doi.org/10.1007/978-3-030-88418-5_10

[23] Mohamed El Boujnouni, Mohamed Jedra, and Noureddine Zahid. 2015. New
malware detection framework based on N-grams and support vector domain
description. In 2015 11th international conference on information assurance and
security (IAS). IEEE, 123–128. https://doi.org/10.1109/ISIAS.2015.7492756

[24] Ammar Ahmed E Elhadi, Mohd Aizaini Maarof, and Bazara IA Barry. 2013.
Improving the detection of malware behaviour using simplified data dependent
API call graph. International Journal of Security and Its Applications 7, 5 (2013),
29–42. https://doi.org/10.14257/ijsia.2013.7.5.03

[25] Lejun Fan, Yuanzhuo Wang, Xueqi Cheng, Jinming Li, and Shuyuan Jin. 2015.
Privacy theft malware multi-process collaboration analysis. Security and Com-
munication Networks 8, 1 (2015), 51–67. https://doi.org/10.1002/sec.705

[26] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and
Ting Liu. 2018. Android malware familial classification and representative sam-
ple selection via frequent subgraph analysis. IEEE Transactions on Information
Forensics and Security 13, 8 (2018), 1890–1905. https://doi.org/10.1109/TIFS.2018.
2806891

[27] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al. 2010. Analysis of machine
learning techniques used in behavior-based malware detection. In 2010 second
international conference on advances in computing, control, and telecommunication
technologies. IEEE, 201–203. https://doi.org/10.1109/ACT.2010.33

[28] Fabio De Gaspari, Dorjan Hitaj, Giulio Pagnotta, Lorenzo De Carli, and Luigi V
Mancini. 2020. The naked sun: Malicious cooperation between benign-looking
processes. In International Conference on Applied Cryptography and Network
Security. Springer, 254–274. https://doi.org/10.1007/978-3-030-57878-7_13

[29] Daniel Gibert, Carles Mateu, and Jordi Planes. 2020. The rise of machine learning
for detection and classification of malware: Research developments, trends and
challenges. Journal of Network and Computer Applications 153 (2020), 102526.
https://doi.org/10.1016/j.jnca.2019.102526

[30] Google. 2021. Colab. Website. https://colab.research.google.com/.
[31] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864. https://doi.org/10.1145/2939672.
2939754

[32] Steven Strandlund Hansen, Thor Mark Tampus Larsen, et al. 2016. An approach
for detection and family classification of malware based on behavioral analysis.
In 2016 ICNC. IEEE, 1–5. https://doi.org/10.1109/ICCNC.2016.7440587

[33] Weiwei Hu and Ying Tan. 2018. Black-box attacks against RNN based malware
detection algorithms. In Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence. https://doi.org/10.48550/arXiv.1705.08131

[34] Kyriakos K. Ispoglou and Mathias Payer. 2016. MalWASH: Washing Malware
to Evade Dynamic Analysis. In Proceedings of the 10th USENIX Conference on
Offensive Technologies (WOOT’16). 106–117. https://doi.org/10.5555/3027019.
3027029

[35] Yuede Ji, Yukun He, Dewei Zhu, Qiang Li, and Dong Guo. 2014. A mulitiprocess
mechanism of evading behavior-based bot detection approaches. In International
conference on information security practice and experience. Springer, 75–89. https:
//doi.org/10.1007/978-3-319-06320-1_7

[36] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept drift
in malware classification models. In 26th USENIX Security Symposium (USENIX
Security 17). 625–642. https://doi.org/10.5555/3241189.3241239

[37] Kaggle. 2021. Malware Dataset. Website. https://www.kaggle.com/datasets/
blackarcher/malware-dataset.

[38] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. 2015. A novel approach to detect
malware based on API call sequence analysis. International Journal of Distributed
Sensor Networks 11, 6 (2015), 659101. https://doi.org/10.1155/2015/659101

[39] Chan Woo Kim. 2018. Ntmaldetect: A machine learning approach to malware
detection using native api system calls. arXiv preprint arXiv:1802.05412 (2018).
https://doi.org/10.48550/arXiv.1802.05412

[40] Dhilung Kirat and Giovanni Vigna. 2015. MalGene: Automatic Extraction of
Malware Analysis Evasion Signature. In ACM SIGSAC Conference on Computer
and Communications Security. 769–780. https://doi.org/10.1145/2810103.2813642

[41] Engin Kirda and Christopher Krügel. 2006. Behavior-based Spyware Detection.
In USENIX Security Symposium.

[42] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao-yong Zhou, and XiaoFeng Wang. 2009. Effective and efficient malware
detection at the end host.. In USENIX security symposium, Vol. 4. 351–366.

[43] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and Davide
Balzarotti. 2021. Does every second count? time-based evolution of malware
behavior in sandboxes. In Proceedings of the Network and Distributed System
Security Symposium, NDSS. The Internet Society. https://doi.org/10.14722/ndss.
2021.24475

[44] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. PMLR, 1188–1196.

[45] Ce Li, Zijun Cheng, He Zhu, Leiqi Wang, Qiujian Lv, Yan Wang, Ning Li, and
Degang Sun. 2022. DMalNet: Dynamic malware analysis based on API feature
engineering and graph learning. Computers & Security 122 (2022), 102872. https:
//doi.org/10.1016/j.cose.2022.102872

[46] Ce Li, Qiujian Lv, Ning Li, Yan Wang, Degang Sun, and Yuanyuan Qiao. 2022. A
novel deep framework for dynamic malware detection based on API sequence
intrinsic features. Computers & Security 116 (2022), 102686. https://doi.org/10.
1016/j.cose.2022.102686

[47] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye.
2018. Significant permission identification for machine-learning-based android
malware detection. IEEE Transactions on Industrial Informatics 14, 7 (2018), 3216–
3225. https://doi.org/10.1109/TII.2017.2789219

[48] Olav Lysne. 2018. The Huawei and Snowden Questions: Can Electronic Equipment
from Untrusted Vendors be Verified? Can an Untrusted Vendor Build Trust Into

272

https://cuckoosandbox.org/
https://www.nist.gov/
https://www.nist.gov/
https://www.virussign.com
https://www.virustotal.com/gui/file/bd49943e2db92d09287923b159b111c33f3374344cf39109aebaa81fc2cd16e0
https://www.virustotal.com/gui/file/bd49943e2db92d09287923b159b111c33f3374344cf39109aebaa81fc2cd16e0
https://www.virustotal.com/gui/file/d9ba27e5554c95350ca0800051d6eca19251c3a8d98662b2b7afbc06e8ead9a6
https://www.virustotal.com/gui/file/d9ba27e5554c95350ca0800051d6eca19251c3a8d98662b2b7afbc06e8ead9a6
https://doi.org/10.1007/978-981-10-5421-1_15
https://doi.org/10.1007/978-981-10-5421-1_15
https://doi.org/10.1145/1654988.1655003
https://doi.org/10.48550/arXiv.1808.01400
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.1016/j.cose.2020.101760
https://doi.org/10.1016/j.cose.2021.102449
https://doi.org/10.1016/j.cose.2021.102449
https://doi.org/10.48550/arXiv.1804.04637
https://doi.org/10.48550/arXiv.1804.04637
https://arxiv.org/abs/1804.04637
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1016/j.engappai.2016.12.008
https://doi.org/10.1016/j.engappai.2016.12.008
https://doi.org/10.1016/S1353-4858(16)30086-1
https://doi.org/10.7717/peerj-cs.346
https://doi.org/10.7717/peerj-cs.346
https://doi.org/10.1016/j.ins.2015.04.035
https://doi.org/10.1109/TIFS.2022.3152360
https://www.cyberdefensemagazine.com/advanced-malware-detection/
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1016/j.cose.2017.10.007
https://doi.org/10.1007/978-3-030-88418-5_10
https://doi.org/10.1007/978-3-030-88418-5_10
https://doi.org/10.1109/ISIAS.2015.7492756
https://doi.org/10.14257/ijsia.2013.7.5.03
https://doi.org/10.1002/sec.705
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1109/TIFS.2018.2806891
https://doi.org/10.1109/ACT.2010.33
https://doi.org/10.1007/978-3-030-57878-7_13
https://doi.org/10.1016/j.jnca.2019.102526
https://colab.research.google.com/
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1109/ICCNC.2016.7440587
https://doi.org/10.48550/arXiv.1705.08131
https://doi.org/10.5555/3027019.3027029
https://doi.org/10.5555/3027019.3027029
https://doi.org/10.1007/978-3-319-06320-1_7
https://doi.org/10.1007/978-3-319-06320-1_7
https://doi.org/10.5555/3241189.3241239
https://www.kaggle.com/datasets/blackarcher/malware-dataset
https://www.kaggle.com/datasets/blackarcher/malware-dataset
https://doi.org/10.1155/2015/659101
https://doi.org/10.48550/arXiv.1802.05412
https://doi.org/10.1145/2810103.2813642
https://doi.org/10.14722/ndss.2021.24475
https://doi.org/10.14722/ndss.2021.24475
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1016/j.cose.2022.102686
https://doi.org/10.1016/j.cose.2022.102686
https://doi.org/10.1109/TII.2017.2789219

API2Vec: Learning Representations of API Sequences for Malware Detection ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Electronic Equipment? Springer Nature. https://doi.org/10.1007/978-3-319-
74950-1

[49] Microsoft. 2015. Microsoft Malware Classification Challenge. Website. https:
//www.kaggle.com/competitions/malware-classification/data.

[50] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013). https://doi.org/10.48550/arXiv.1301.3781

[51] Fahad Mira. 2019. A review paper of malware detection using api call sequences.
In 2019 2nd International Conference on Computer Applications & Information
Security (ICCAIS). IEEE, 1–6. https://doi.org/10.1109/CAIS.2019.8769564

[52] Robert Moir. 2009. Defining Malware: FAQ. Website. https:
//docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=
technet.10)?redirectedfrom=MSDN.

[53] Bruce Ndibanje, Ki Hwan Kim, Young Jin Kang, Hyun Ho Kim, Tae Yong Kim,
and Hoon Jae Lee. 2019. Cross-method-based analysis and classification of
malicious behavior by api calls extraction. Applied Sciences 9, 2 (2019), 239.
https://doi.org/10.3390/app9020239

[54] Quoc-Dung Ngo, Huy-Trung Nguyen, Van-Hoang Le, and Doan-Hieu Nguyen.
2020. A survey of IoT malware and detection methods based on static features.
ICT Express 6, 4 (2020), 280–286. https://doi.org/10.1016/j.icte.2020.04.005

[55] Stavros D Nikolopoulos and Iosif Polenakis. 2017. A graph-based model for mal-
ware detection and classification using system-call groups. Journal of Computer
Virology and Hacking Techniques 13, 1 (2017), 29–46. https://doi.org/10.1007/
s11416-016-0267-1

[56] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. 2019. Dynamic malware
analysis in the modern era—A state of the art survey. ACM Computing Surveys
(CSUR) 52, 5 (2019), 1–48. https://doi.org/10.1145/3329786

[57] Abdurrahman Pektaş and Tankut Acarman. 2020. Deep learning for effective
Android malware detection using API call graph embeddings. Soft Computing
24, 2 (2020), 1027–1043. https://doi.org/10.1007/s00500-019-03940-5

[58] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating experimental bias in mal-
ware classification across space and time. In 28th USENIX Security Symposium
(USENIX Security 19). 729–746. https://doi.org/10.5555/3361338.3361389

[59] Xiaowei Peng, Hequn Xian, Qian Lu, and Xiuqing Lu. 2021. Semantics aware
adversarial malware examples generation for black-box attacks. Applied Soft
Computing 109 (2021), 107506. https://doi.org/10.1016/j.asoc.2021.107506

[60] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710. https://doi.org/10.
1145/2623330.2623732

[61] Marco Ramilli, Matt Bishop, and Shining Sun. 2011. Multiprocess malware. 2011
6th International Conference on Malicious and Unwanted Software (2011), 8–13.
https://doi.org/10.1109/MALWARE.2011.6112320

[62] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.
2008. Learning and classification of malware behavior. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
108–125. https://doi.org/10.1007/978-3-540-70542-0_6

[63] Ishai Rosenberg, Asaf Shabtai, et al. 2018. Generic black-box end-to-end at-
tack against state of the art API call based malware classifiers. In International

Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 490–510.
https://doi.org/10.1007/978-3-030-00470-5_23

[64] Raj Samani. 2021. McAfee Labs Threats Report–June 2021. McAfee Labs (2021).
[65] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2016.

Madam: Effective and efficient behavior-based android malware detection and
prevention. IEEE Transactions on Dependable and Secure Computing 15, 1 (2016),
83–97. https://doi.org/10.1109/TDSC.2016.2536605

[66] Virus Total. 2022. Virustotal-free online virus, malware and url scanner. Online:
https://www.virustotal.com/en 2 (2022).

[67] Trung Kien Tran and Hiroshi Sato. 2017. NLP-based approaches for malware
classification from API sequences. In 2017 21st Asia Pacific Symposium on Intel-
ligent and Evolutionary Systems (IES). IEEE, 101–105. https://doi.org/10.1109/
IESYS.2017.8233569

[68] Swapna Vemparala, Fabio Di Troia, Visaggio Aaron Corrado, Thomas H Austin,
and Mark Stamo. 2016. Malware detection using dynamic birthmarks. In Proceed-
ings of the 2016 ACM on international workshop on security and privacy analytics.
41–46. https://doi.org/10.1145/2875475.2875476

[69] Deepak Venugopal and Guoning Hu. 2008. Efficient signature based malware
detection on mobile devices. Mobile Information Systems 4, 1 (2008), 33–49.

[70] Peng Wang, Zhijie Tang, and Junfeng Wang. 2021. A novel few-shot malware
classification approach for unknown family recognition with multi-prototype
modeling. Computers & Security 106 (2021), 102273. https://doi.org/10.1016/j.
cose.2021.102273

[71] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver: Self-
evolving android malware detection system. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 47–62. https://doi.org/10.1109/EuroSP.
2019.00014

[72] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey
on malware detection using data mining techniques. ACM Computing Surveys
(CSUR) 50, 3 (2017), 1–40. https://doi.org/10.1145/3073559

[73] Suleiman Y Yerima, Sakir Sezer, and Gavin McWilliams. 2014. Analysis of
Bayesian classification-based approaches for Android malware detection. IET
Information Security 8, 1 (2014), 25–36. https://doi.org/10.1049/iet-ifs.2013.0095

[74] Salih Yesir and İbrahim Soğukpinar. 2021. Malware Detection and Classification
Using fastText and BERT. In 2021 9th International Symposium on Digital Forensics
and Security (ISDFS). IEEE, 1–6. https://doi.org/10.1109/ISDFS52919.2021.9486377

[75] Zenodo. 2019. Dynamic Malware Analysis kernel and user-level calls. Website.
https://zenodo.org/record/1203289.

[76] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing state-of-the-art classifiers
with api semantics to detect evolved android malware. In Proceedings of the
2020 ACM SIGSAC conference on computer and communications security. 757–770.
https://doi.org/10.1145/3372297.3417291

[77] Zhaoqi Zhang, Panpan Qi, and Wei Wang. 2020. Dynamic malware analysis with
feature engineering and feature learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34. 1210–1217. https://doi.org/10.1609/aaai.v34i01.5474

Received 2023-02-16; accepted 2023-05-03

273

https://doi.org/10.1007/978-3-319-74950-1
https://doi.org/10.1007/978-3-319-74950-1
https://www.kaggle.com/competitions/malware-classification/data
https://www.kaggle.com/competitions/malware-classification/data
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1109/CAIS.2019.8769564
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)?redirectedfrom=MSDN
https://doi.org/10.3390/app9020239
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.1007/s11416-016-0267-1
https://doi.org/10.1007/s11416-016-0267-1
https://doi.org/10.1145/3329786
https://doi.org/10.1007/s00500-019-03940-5
https://doi.org/10.5555/3361338.3361389
https://doi.org/10.1016/j.asoc.2021.107506
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1109/MALWARE.2011.6112320
https://doi.org/10.1007/978-3-540-70542-0_6
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1109/IESYS.2017.8233569
https://doi.org/10.1109/IESYS.2017.8233569
https://doi.org/10.1145/2875475.2875476
https://doi.org/10.1016/j.cose.2021.102273
https://doi.org/10.1016/j.cose.2021.102273
https://doi.org/10.1109/EuroSP.2019.00014
https://doi.org/10.1109/EuroSP.2019.00014
https://doi.org/10.1145/3073559
https://doi.org/10.1049/iet-ifs.2013.0095
https://doi.org/10.1109/ISDFS52919.2021.9486377
https://zenodo.org/record/1203289
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1609/aaai.v34i01.5474

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Method

	2 Threat Model and Assumptions
	3 Proposed Approach
	3.1 Approach Overview
	3.2 Case Study
	3.2.1 Raw Sequence
	3.2.2 API2Vec

	3.3 Key Challenges

	4 Temporal Graphs
	4.1 Logical Time
	4.2 Temporal API Graph
	4.3 Temporal Process Graph
	4.4 Discussion

	5 Heuristic Random Walk
	5.1 Basic Idea of Heuristic Random Walk
	5.1.1 Justification of Heuristic Rules.
	5.1.2 Overflow of Heuristic Random Walk.

	5.2 Random Walk inside TAG
	5.2.1 Vertex Selection.
	5.2.2 Edge Selection.
	5.2.3 End Condition.
	5.2.4 Return to TPG Mechanism.

	5.3 Random Walk inside TPG
	5.3.1 Vertex Selection.
	5.3.2 TAG Start Vertex Selection.
	5.3.3 End Condition.

	6 Learning Tasks
	7 Evaluation
	7.1 Experimental Setup
	7.1.1 Dataset.
	7.1.2 Compared Methods.

	7.2 Malware Detection Ability (RQ1)
	7.2.1 Performance on the Whole Dataset
	7.2.2 Performance on Multi-process Programs

	7.3 Robustness to Concept Drift (RQ2)
	7.3.1 New Malware that Appear in a New Year
	7.3.2 Malware of New Type

	7.4 Robustness to Adversarial Attacks (RQ3)
	7.5 Ablation Study (RQ4)
	7.5.1 The Gain of Proposed Components
	7.5.2 Various Learning Models.

	7.6 Runtime Overhead (RQ5)
	7.7 Case Studies
	7.7.1 Sample 1 virus-example-1
	7.7.2 Sample 2 virus-example-2

	8 Related Work
	9 Limitation and Discussion
	10 Conclusion
	References

