
This paper is included in the Proceedings of the 
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the 
30th USENIX Security Symposium 

is sponsored by USENIX.

DEFInIt: An Analysis of Exposed Android Init Routines
Yuede Ji, University of North Texas; Mohamed Elsabagh, Ryan Johnson, and 

Angelos Stavrou, Kryptowire
https://www.usenix.org/conference/usenixsecurity21/presentation/ji



DEFINIT: An Analysis of Exposed Android Init Routines

Yuede Ji∗
University of North Texas

yuede.ji@unt.edu

Mohamed Elsabagh
Kryptowire

melsabagh@kryptowire.com

Ryan Johnson
Kryptowire

rjohnson@kryptowire.com

Angelos Stavrou
Kryptowire

astavrou@kryptowire.com

Abstract

During the booting process of an Android device, a special
daemon called Init is launched by the kernel as the first user-
space process. Android allows vendors to extend the behavior
of Init by introducing custom routines in .rc files. These Init
routines can also be triggered by privileged pre-installed apps
in a certain manner to accomplish privileged functionalities.
However, as these pre-installed apps may fail to properly pro-
tect access to code sites triggering these Init routines, the
capabilities of these routines may leak to unprivileged apps,
resulting in crossing security boundaries set by the system.
To this end, this study aims at investigating the prevalence
of these Init routines and their security impact. We present
DEFINIT as a tool to help automate the process of identifying
Init routines exposed by pre-installed apps and estimating
their potential security impact. Our findings are alarming. We
found that custom Init routines added by vendors were sub-
stantial and had significant security impact. On a data set of
259 firmware from the top 21 vendors worldwide, we iden-
tified 1,947 exposed custom Init routines in 101 firmware
from 13 vendors. Of these routines, 515 performed at least
one sensitive action. We verified 89 instances spanning 30
firmware from 6 vendors, allowing unprivileged apps to per-
form sensitive functionalities without user interaction, includ-
ing disabling SELinux enforcement, sniffing network traffic,
reading system logs, among others.

1 Introduction

Android is open source and freely available to vendors to
customize and port to different platforms. Owing to its open-
source nature, Android has dominated the global smartphone
market, holding more than 72% of the market share as of De-
cember 2020 [1]. The Android ecosystem is vast and versatile
in supporting various platforms such as TVs, wearables, info-
tainment systems, and IoT devices. Android is built on top of a

∗This work was done while the first author was interning at Kryptowire.

modified Linux with several changes at the kernel and user lev-
els. Perhaps the most substantial of those is Android’s process
isolation and permission model: Android apps run in isolated
processes, receive private storage spaces on the filesystem,
can communicate using Android-specific secure inter-process
communication (IPC) mechanisms, and require permission
to access OS resources. This has also been the most studied
aspect of Android from a security perspective [2–12].

Less studied are Android changes to Linux that are not nec-
essarily visible to app developers and users. Few prior works
have looked at the security risks stemming from Android cus-
tomizations to boot loaders [13], kernel drivers [14], memory
management [15], and SELinux policies [13,16]. Other areas,
such as changes to user-space daemons, received little to no
attention. Of particular interest to us are changes made to
the “Init” process, the first user-space process launched by
the kernel after booting. Similar to Linux, Init on Android
initializes the user space by mounting filesystems, initializ-
ing hardware, setting security policies, and loading essential
system components. Different from Linux though, Init on An-
droid is also the system property store where it keeps global
system properties (in the form of key-value pairs) set by Init
itself and other privileged Android processes.

More importantly, Android Init can execute custom rou-
tines in response to changing system properties. Android ven-
dors can introduce privileged apps and executables to support
certain vendor-specific hardware (e.g., sensors and custom
partitions) and introduce value-added software services (e.g.,
custom pin-locked storage for vendor apps). These custom
Init routines are defined in .rc files in the form of what An-
droid Init calls “actions” and “services” using the Android
Init Language [17] and execute with higher privileges than
available to regular processes.1

Our work focuses on these vendor modifications to Init
and attempts to assess their prevalence and potential security
impact. Specifically, we are interested in studying security
threats stemming from privileged apps exposing access to

1Unless otherwise stated, in the rest of this document we use the term
“Init routine” to collectively refer to Init actions and services.
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Init routines that perform sensitive functionality. To this end,
we propose an analysis system called DEFINIT to help us
systematically analyze Android firmware images, map out
the behaviors of custom Init routines, identify their necessary
trigger conditions, analyze the privileged apps triggering them,
and highlight sensitive routines exposed by privileged apps.2

We applied DEFINIT to 259 Android firmware from the
top 21 vendors worldwide containing a total of 64,632 pre-
installed apps and identified 1,947 exposed Init routines, all of
which were added by vendors. Of these routines, 515 perform
at least one sensitive action, impacting 101 firmware from
13 vendors. We further identified and verified 89 instances
spanning 30 firmware from 6 vendors, allowing unprivileged
apps to perform sensitive functionalities, such as disabling
SELinux enforcement, capturing network traffic, reading sys-
tem logs, recording the device screen, among others. Our
findings highlight the significant security risks posed by ven-
dor customizations to the Init process that are visible at the
application layer, an area that has been previously unexplored.
To summarize, we make the following contributions:

• Novel System. We propose DEFINIT, an automated
practical system to process Android firmware images
and identify Init routines, estimate their behavior, iden-
tify routines exposed by privileged apps, and highlight
interesting routines that potentially pose a security risk.

• Systematic Study. We present the first comprehensive
study on vendor customization to Android Init routines
triggerable from privileged apps using a corpus of 259
firmware covering Android versions 8 to 11 from the top
21 vendors worldwide.

• New Findings. We provide new insights into the preva-
lence and security impact of customized Init routines and
highlight multiple concrete exploitable instances with
severe security and privacy impact to end users.

2 Background

2.1 Android Firmware Customization
We use the term Android firmware to refer to Android OS
images that can be flashed to a device. An Android firmware
contains all files necessary for the device to operate, and
typically includes a bootloader, kernel, boot files, security
policies, OS files, and pre-installed apps bundled by the device
vendor. These files are packed as a set of partition blocks, and
the firmware itself is delivered as a compressed archive (the
exact file structure differs among vendors).

Android vendors customize their devices by including ad-
ditional hardware and software to differentiate themselves by
providing a unique, branded experience. The vendors take the
official version of Android from the Android Open Source

2DEFINIT stands for Detecting Exposed Functionalities from Init.

Project (AOSP) to make modifications and integrate their
code. These modifications often touch many parts of the sys-
tem, including boot files and OS components. It is possible
to identify the base AOSP version a firmware image was
forked from by inspecting the /build.prop file in a firmware
root filesystem. Once identified, one can identify vendor cus-
tomization by diffing files from a vendor firmware with their
counterparts, if present, in the firmware base AOSP image.

Vendors also often include apps from their partners, hard-
ware manufacturers, and carriers. Android apps are classi-
fied by type and an app’s type limits the actions the app
can perform on the device. A third-party app is an app that
does not originate from the device vendor and is generally
directly installed by the user through an app marketplace. A
pre-installed app is an app that the vendor has included in
the device firmware. Pre-installed apps are often necessary
for proper system functionality. Pre-installed apps, by their
nature of being selected by the vendor, can obtain permissions
and capabilities that are not available to third-party apps. A
pre-installed app in this regard is considered privileged versus
third-party apps installed from the market.

2.2 Android Init

Like all Unix-like systems, Android has a special daemon
process named Init (short for initialization) that executes first
in user space once the kernel has finished booting. The Init
process runs as root and acts as the progenitor to all other user
space processes. The Init process is responsible for starting
up the system, setting up directories and their permissions,
mounting partitions, initializing peripherals, and setting up
various system settings. On Android, the Init binary is located
at /init at the root filesystem.

Android Init, however, diverges from traditional Unix-like
systems in multiple ways. For instance, Init implements the
system property store where it provides global read access to
system properties to other processes (e.g., via the getprop
command) and provides privileged processes with write ac-
cess to system properties (e.g., via the setprop command).
Android Init also acts as the device event handler (e.g., when
the device is connected to USB).

Most importantly, device vendors can configure and extend
the behavior of Android Init by defining custom Init routines
in Init Resource Files (.rc files for short) that Init loads at boot
time. These .rc files can be stored on different partitions, such
as /system and /vendor. Init starts by loading the /init.rc
file which further imports other .rc files. Init routines are
implemented in the form of “actions” and “services” written
in the Android Init Language [17]. An Android Init action is
a named sequence of internal Init commands. An Init service
specifies an external program for Init to launch, and potentially
restart, with different runtime settings and security contexts.

Android Init can execute an Init routine at any point while
the system is running when its corresponding “trigger” is
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matched. A trigger is a conditional statement that starts with
“on” followed by a strictly conjunctive expression over Init
event names (called Event Triggers) or system property values
(called Property Triggers). Property Triggers use the word
"property:" followed by a property name and expected value
(e.g., "on property:service.adb.root=1"). Once the con-
ditions for a trigger are satisfied at runtime, the associated
actions for the trigger are executed.

Init recognizes several special property prefixes, includ-
ing "ro.*" for read-only properties, "persist.*" for prop-
erties that survive reboots, and "sys.usb.*" for device
USB attachment settings, among others. Init also recog-
nizes two custom properties, "ctl.start=<service>" and
"ctl.stop=<service>", that can be set by privileged apps to
directly start and stop Init services without necessarily need-
ing to satisfy their triggers.

Init property triggers use global system properties that
can only be set by privileged apps and processes using in-
ternal Android commands and APIs, such as android.os.
SystemProperties.set and setprop, that are not available
to third-party apps. In this regard, privileged apps can be
thought of as deputies as they can act on the request of an
unprivileged app and invoke an Init routine by setting system
properties. This can allow an unprivileged app to indirectly
launch a sensitive Init routine through an open interface in a
privileged app, resulting in crossing the security boundaries
set by the system as the capabilities of the exposed Init routine
are effectively leaked to the unprivileged app.

3 Threat Model and Assumptions

Our threat model assumes the users have installed an attacker-
controlled, third-party app on their devices. This attack app
will attempt to escalate its privileges by interacting with priv-
ileged pre-installed apps that have the capability to modify
system properties that start Init routines.

We assume the attack app will interact with a privileged
app by sending crafted inter-process communication (IPC)
messages to exported (i.e., callable by other apps) components
in the privileged app. This is a standard threat model specific
to the Android ecosystem where apps are sandboxed and pre-
installed apps can be granted permissions and capabilities
not available to third-party apps [2–8, 10–12]. These methods
allow the attack app to indirectly invoke code sites within
a privileged app that cause the setting of system properties,
launching an Init routine that performs a functionality that a
third-party cannot perform given its limited privileges.

We only consider pre-installed apps as the access vector to
Init routines. Analyzing other potential access vectors intro-
duced by vendors is outside the scope of this work. Finally, we
consider only Android versions 8.0 and higher since versions
prior to 8.0 no longer receive system updates nor security
patches as of this writing.

...
setenforce 0
...

/bin/wifitest.sh

void onReceive(...) {
...
setprop(“a”, “1”);
setprop(“b”, “true”);
...

}

System App (privileged)

void exploit() {
v0 = new Intent(“wifitest”);
sendBroadcast(v0);
...

}

Attack App (unprivileged) Init

on property:a=1 && property:b=true
...
start wifitest
...

service wifitest /bin/wifitest.sh
user root
...

1

2

4

3

Figure 1: A simplified example based on a real-world case identified
by DEFINIT for disabling SELinux enforcement through an Init
service exposed by a pre-installed app.

4 Overview

4.1 Motivating Example
A real-world example of an exposed sensitive Init routine
detected by DEFINIT is shown in Figure 1, where an unprivi-
leged app disables SELinux policy enforcement on the device
for all processes by exploiting a privileged app invoking a
sensitive Init service. The figure shows the interactions be-
tween the attack third-party app, the privileged system app,
the Init process, and the shell script invoked by a custom Init
service to disable SELinux. A third-party attack app broad-
casts a message (called an Intent in the context of Android)
with an action of "wifitest" in step 1 . The Intent is received
by an exported component in a privileged system app that
registered to receive that action. Once received, the privi-
leged app sets the system properties "a" to "1" and "b" to
"true" in step 2 . These two system properties trigger an Init
action (i.e., satisfy its conditions) that starts the wifitest ser-
vice in step 3 . The wifitest service in turn executes a shell
script /bin/wifitest.sh, in step 4 , as the root user. Finally,
the script executes the setenforce 0 command that disables
the system-wide enforcement of Mandatory Access Control
(MAC) SELinux policies (the main defense mechanism An-
droid systems depend on to establish mandatory privilege
boundaries among processes).

4.2 Challenges and Key Insights
This study aims to identify potential security weaknesses
stemming from Init routines exposed to unprivileged apps.
We propose DEFINIT as a system that helps automatically
highlight these potential issues for an analyst. DEFINIT has
to handle multiple challenges concerned with processing Init
files, understanding the behaviors of Init routines and their
potential security impact, capturing dependencies and trigger
conditions, identifying privileged apps invoking these rou-
tines, and detecting sensitive routines exposed to unprivileged
actors. We discuss these challenges in the following.
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C1: Processing Init files. While the Android Init Language
is documented at [17], Init itself loads and processes .rc files
dynamically in the presence of extra sources of information,
such as system properties preloaded at boot time. Init .rc files
can also reference Init sections defined in other files (using an
import statement) and service definitions are polymorphic
(i.e., a service can override its parent definition by using an
override modifier). Since DEFINIT is static, we needed to
implement a parser for .rc files that closely mimics the dy-
namism of Init. By studying the source code of Init, we found
that we can start parsing at the root /init.rc file and nest into
included files in depth-first order to mimic the behavior of
Init. We discuss this in more detail in §5.1.

C2: Determining action and service behaviors. Init rou-
tines can execute programs represented as Init commands,
ELF binaries, and shell scripts. DEFINIT needs to be able to
determine the behavior of these programs to identify which
routines perform security-relevant functionalities and the sen-
sitivity of these functionalities. While the behaviors of individ-
ual commands and standard Android APIs are documented,
the problem of automatically determining the behavior of ar-
bitrary programs is undecidable as it can be reduced to the
halting problem [18]. Nevertheless, the behavior of a pro-
gram can be estimated based on information present in the
executable program file that could indicate its behavior.

In DEFINIT, we estimate the behavior of routines by ex-
tracting code traces (including hardcoded parameter values)
from their binaries and estimating the behavior of these traces
using a compiled list of behaviors of potentially sensitive
commands and standard Android APIs. This process maps a
routine to a vector of behavioral categories, allowing an ana-
lyst to get an idea of its estimated general behavior. We also
used static rules in our evaluation to help highlight specific
behaviors by looking in the traces for certain call patterns. For
example, if an Init service calls a system command to dump
system logs to a file followed by a command that moves files
to external storage, then it can be estimated that the service
leaks the system logs to external storage. The specifics of
behavior estimation vary depending on the kind of program
executable being analyzed, which we detail out in §5.2.

C3: Modeling trigger conditions. There exist multiple in-
terdependencies between Init actions, services, and Android
commands and APIs. For instance, an action could start a
service that runs a program that itself starts another Init ser-
vice by setting an Init property to which a property trigger
is registered. Actions could also start multiple services and
commands. Trigger conditions can be composed of proper-
ties set by disjoint routines, making it difficult to identify the
necessary trigger sequences to get Init to launch a certain
routine. Therefore, DEFINIT needs to capture these depen-
dencies (including transitive ones) to be able to reason about

the conditions necessary to trigger a certain behavior via Init
routines. To capture these interdependencies, DEFINIT builds
a graph that we refer to as Init Dependency Graph (IDG). In
an IDG, nodes represent Init triggers, Init services, and exe-
cutables called by routines. (An executable here can be an
Init command, a shell command, or an ELF binary.) Edges in
an IDG represent call edges between triggers, services, and
executables; and conjunction relationships between conjuncts
in a composite property trigger. Using an IDG, we can ef-
ficiently extract relationships between Init actions, services,
triggers, and the conditions necessary to execute a certain Init
action or service. We discuss IDGs in §5.3.

C4: Identifying exposed routines and behaviors. On
Android, Init properties can only be set by privileged
apps (including privileged native binaries) by using inter-
nal APIs, such as android.os.SystemProperties.set and
__system_property_set, that are not available to third-
party apps. Privileged apps here can be thought of as deputies
that control access to Init routines. Privileged apps that invoke
sensitive Init routines based on requests from unprivileged
apps can be subject to confused-deputy attacks where the
capabilities performed by Init leak to the unprivileged apps.

Identifying privileged apps invoking Init routines requires
identifying app call sites that invoke APIs setting system prop-
erties, and resolving the parameter values of these APIs to
identify the properties being set and their corresponding val-
ues at each call site. In DEFINIT, we developed a technique to
identify the property keys being read/written and the mapping
between each property key and its corresponding value in a
context- (i.e., taking the callee stacks at each relevant API call
site into consideration) and flow-sensitive (i.e., taking state-
ments execution order into consideration) manner. We then
identify exposed routines by looking for control-flow paths
from exported app entry points to relevant code sites. We tune
our analysis to avoid false positives from dynamic bytecode
constructs (e.g., virtual calls) at the expense of soundness (i.e.,
missing some valid flows). More details are provided in §5.4.

5 Detailed Design

Figure 2 shows the workflow of DEFINIT. Given an An-
droid firmware image as input, DEFINIT unpacks it to extract
needed files. It then processes Init .rc files to identify custom
Init routines. We consider a service to be custom, i.e., a re-
sult of vendor modification, if it references an executable that
was not present in the base AOSP image of the firmware. We
consider an action as custom if its trigger is not found in the
base AOSP image. DEFINIT then estimates the behavior of
these routines and assesses their security impact. Following
that, DEFINIT identifies privileged apps exposing access to
these sensitive routines and generates a report containing a
listing of the exposed routines, their estimated behaviors and
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r1: [(/bin/wifitest.sh, root, a=1&b=true), ...]
r2: [(/vendor/bin/x.sh, root, c=10), ...]
...

r1: wifitest.sh: [setprop x y; setenforce 0; ...]
                       (perms, disable selinux, ...)
r2: x.sh: [tcpdump a; mv a /sdcard; ...]], 
              (dump, capture traffic, ...)
...

disable selinux: 
   - setenforce 0]
capture traffic: 
   - tcpdump
   - mv * /sdcard/*
...

Model Trigger
Conditions &

Dependencies

Identify Apps
Exposing Init

Routines

a=1 &&
b=true

a=1 b=true

r1

wifitest.sh

app1: (r1: perms, disables selinux, ...), ...
app2: (r2: dump, captures traffic, ...), ...
...

. .{.sh} . .ELF

..APP...prop

Behavioral  
Rules

Android
Firmware

. .{.rc}

Figure 2: Workflow of DEFINIT.

security impact, privileged apps exposing them and how, and
Init trigger conditions needed to invoke these routines. We
discuss the details of these steps in the following.3

5.1 Extracting Init Routine Definitions
DEFINIT processes .rc files to extract Init routines and the
commands or executables they invoke. Parsing occurs ac-
cording to the syntax of the Android Init Language [17] in
a way that mimics the runtime behavior of Init. Specifically,
DEFINIT parses each .rc file line by line, starting at the root
/init.rc file, then nests into imported files in depth-first or-
der following the same import rules in [17, sec. imports].
Variables encountered during parsing of static Init constructs
(e.g., import paths) are substituted with their corresponding
default values from .prop and boot environment files.

Since an Init service definition can override a previous def-
inition associated with the same service name, DEFINIT only
keeps the most-specialized service definition that uses the
override modifier (i.e., the last encountered definition in Init
.rc parsing order that sets the override modifier). For a trig-
ger that is declared multiple times, DEFINIT appends all its
actions under the first-encountered trigger (this is equivalent
to Init sequentially invoking the actions of each declaration

3We omit the details of the firmware unpacking process as we employ
standard unpacking tools and techniques. Interested readers can refer to prior
work (e.g., [9, 11]) for information on unpacking techniques.

of the trigger at runtime). The output of this step is an enu-
meration of the effective set of Init routines (i.e., the subset of
routines that are live at runtime) and their associated triggers,
SELinux modifiers, and other attributes as defined in [17].

5.2 Estimating Behaviors of Init Routines

The goal of this step is to estimate the behavior of executables
invoked by Init when a trigger is fired. Init can invoke three
kinds of executables in response to a trigger: Init actions, shell
scripts, and ELF binaries. We discuss how we collect code
traces from each executable kind in the following.

Init actions are defined by the Init Language [17] as
a named sequence of predefined Init commands, therefore
DEFINIT extracts Init action traces from the action definitions
in .rc files as a list of Init commands, substituting hardcoded
property values as needed from .prop files.

For shell scripts, DEFINIT employs a custom shell tracer
that dry-runs shell scripts inside a sandbox built on top of
Bash trace mode (see bash -x option at [19]) to collect their
command traces. Since these scripts are executed in a for-
eign environment, it is expected that they would incur runtime
errors due to missing dependencies from their execution en-
vironment. Therefore, DEFINIT needs to carefully control
their execution to maximize coverage. Specifically, DEFINIT
taints environment and command-line arguments available
at a shell script invocation site in an .rc file, and evaluates
only conditional statements in the script that depend on (i.e.,
directly uses or derived from) these arguments. Additionally,
DEFINIT ignores “sleep” statements and masks return codes
of invoked shell commands to avoid prematurely exiting the
script due to missing commands.

For ELF binaries, DEFINIT collects static traces of called
APIs by traversing simple paths in the binary inter-procedural
control-flow graph (ICFG) in depth-first order, starting at
the binary entry point function and ignoring control flows
through basic blocks not calling any APIs. For relevant APIs
with potentially sensitive arguments, DEFINIT performs inter-
procedural Def-Use analysis to propagate constant character
strings and numerical definitions to API call sites to identify
arguments at each call site of interest. In addition, DEFINIT
extracts strings from the binary that resemble system com-
mands by matching the first token of strings to executable
file names and paths available in the input ROM. This whole
process is done recursively through the ELF executable and
its dynamically linked functions.

DEFINIT then uses the traces for each Init routine to an-
notate the routine with behavioral categories based on the
curated list of behaviors of security-sensitive APIs and com-
mands shown in Table 1. We collected these by, first, automat-
ically enumerating all the commands in AOSP images and
the APIs in Bionic libc. This resulted in 473 commands and
4,259 APIs. Then, we filtered out the obviously non-security-
relevant ones, leaving us with 137 commands and 64 APIs.
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Table 1: Security-sensitive APIs and commands used by DEFINIT

for highlighting security-sensitive Init routines.

Category APIs/Commands Count
Device Settings hid ime locksettings settings svc 5
Sensitive Data atrace bugreport content diag_klog

diag_mdlog diag_socket_log
diag_uart_log dumpstate dumpsys
logcat ramdump record_stream_new
screencap screenrecord tcpdump

15

Networking dnsmasq ifconfig iptables telecom send
sendfile sendfile64
socket_local_server_bind

8

Package Management applypatch pm dpm insmod patchoat 5
Permission Control keystore appops setsid load_policy

setenforce
5

Power Management thermal_engine __reboot
android_reboot reboot

4

Process Management cmd killall killpg ptrace service 5
UI Interaction virtual_touchpad am input sendevent

monkey uiautomator
6

Total 53

Finally, we consulted the documentations of these commands
and APIs and shortlisted the potentially sensitive ones.

For each Init routine, DEFINIT annotates it with the counts
of security-sensitive commands and APIs it executes. This
categorization gives an analyst a basic understanding of the
overall behavior of a service and its potential security impact.
DEFINIT then uses pattern-matching rules to identify call
sequences in the traces that indicate more specific interesting
behaviors. For example, a common source of vulnerabilities
in Android is leaking sensitive data to external (shared) stor-
age, which DEFINIT can identify by looking in the traces for
calls to a command from the Sensitive Data category followed
by calls to commands that move files to a path on external
storage. We developed 116 rules to match specific call se-
quences and parameters (one to three calls per rule). These
rules are incrementally developed by analysts as they require
domain knowledge of security weaknesses that may manifest
as a result of invoking Android commands and APIs.

5.3 Modeling Trigger Conditions

To capture trigger conditions of Init routines, we propose a
directed heterogeneous graph structure that we refer to as
Init Dependency Graph (IDG) in which we encode trigger
conditions and transitive dependencies between Init triggers,
actions, services, and executed programs. Figure 3 shows the
IDG for the running example in Figure 1. DEFINIT uses an
IDG to identify what functionality Init performs in response
to properties set by privileged apps and binaries.

There are three types of nodes in the IDG: trigger, service,
and executable nodes. A trigger node represents a single Init
trigger condition. For example, the trigger node "a=1" de-
notes that the property key "a" needs to equal "1" at that state
in the IDG. We split composite triggers (boolean conjunctions
of trigger conditions) into multiple nodes, one for each trig-

  IDG

a=1 &&
b=true

conj.

a=1

conj.

b=true

wifitestcall

/bin/wifitest.sh

call

invoke

Attack App

set

set

Pre-installed App

trigger routine executable

Figure 3: Simplified Init Dependency Graph (IDG) for the running
example in Figure 1.

ger condition (a conjunct). A service node represents an Init
service. An executable node is a terminal node that represents
the executable invoked by an Init command (as part of an Init
action) or a service. We use one unique node for each unique
executable invocation (including the executable arguments).
A trigger node is also added for the custom Init property
ctl.start=<service name> for each identified service.

Our IDG construction algorithm is shown in Algorithm 1.
Edges in an IDG can be call edges or conjunction edges.
A call edge represents a caller-callee relationship between
different nodes. Note that a trigger node can call other trigger
nodes by setting properties or triggering events using Init
commands such as setprop and trigger. Also, Init actions
can start services and invoke executables using Init commands
such as start and exec.

Conjunction edges in an IDG encode the dependency of
a multi-condition trigger (a boolean conjunction) on its indi-
vidual operand conditions (each is a property trigger node).
For example, the trigger "a=1 && b=true" in Figure 1 will
have two conjunction edges from the trigger nodes "a=1"
and "b=true". Note that a conjunction trigger can only be
satisfied when all its operand property conditions are satisfied,
and a property can be used by different trigger conditions
(potentially with different property values).

Finally, we add fall-through call edges from executables
that call an Android API or a command setting an Init property
to the corresponding target trigger nodes that use that property.
The property keys and values in these scenarios are extracted
from the traces collected in §5.2.

DEFINIT builds one IDG for each firmware image. The
IDG provides a global view of the transitions occurring in-
side Init that involve triggers, services, and executables in the
firmware, allowing DEFINIT to understand what behaviors
Init can launch and the conditions needed to trigger them by
traversing the IDG as explained in the following section.

5.4 Identifying Exposed Routines

The next step for DEFINIT is to identify the mapping be-
tween privileged apps and sensitive Init routines. To do this,
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Algorithm 1: Construct Init Dependency Graph.
inputs :T ←Map of triggers to their routines
output :G← Init Dependency Graph

1 foreach trigger t ∈ T do
2 add node t to G if missing
3 if t is a conjunction trigger then
4 foreach conjunct ti ∈ t do
5 add node ti to G if missing

6 add edge ti
con j.−−−→ t to G

7 foreach action or service s in T [t] do
8 add node s to G if missing

9 add edge t call−−→ s to G
10 foreach executable x called by s do
11 add node x to G if missing

12 add edge s call−−→ x to G
13 foreach property/service p set/called by x do
14 add node p to G if missing

15 add edge x call−−→ p to G

Algorithm 2: Extract written properties.
inputs :A← {APIs to write a local/system property}

S← app ICFG with Def-Use information
output :mapping between written keys and corresponding values

// S, K are in depth-first order
1 foreach statement s ∈ S calling some API ∈ A do
2 K← {definition points in S of property keys used by the first

argument at s}
3 foreach k ∈ K do
4 foreach call stack T carrying k to s do
5 V ← {property values defined in the scope of T used by the

second argument at s}
6 emit s,k,V

DEFINIT first scans each pre-installed app for code sites that
call certain Android APIs of the form set(key, value), such
as android.os.SystemProperties.set, to set a system prop-
erty. Then, DEFINIT builds an ICFG and performs Def-Use
based analysis to identify each set property key and its cor-
responding values in a context- and flow-sensitive manner
where the keys and values are extracted per each call stack
ending at a relevant API call site. Algorithm 2 shows the ba-
sic working principle of this technique. The goal here is to
extract each key and its corresponding values set by an app
along each call stack of a relevant API call site, rather than
extracting bags of all keys and all values used at the call site.

Similarly, DEFINIT also extracts system properties read
by privileged apps and local properties read/written by priv-
ileged apps that share the same UID. DEFINIT then adds
corresponding nodes and edges to the IDG to capture indirect
information flows between apps using these properties. This
is necessary since Android allows apps to share process-scope

properties by using the same process UIDs.4 For example, a
privileged app can have an exposed call site that sets a local
property to signal another privileged app to invoke a sensitive
Init routine. Not accounting for these cross-app properties
would leave exposed routines hiding behind these indirec-
tions undetected. DEFINIT uses identified written properties
to walk the IDG and discover sensitive Init routines that can
be triggered. Specifically, for each privileged app, DEFINIT
walks the IDG starting at property trigger nodes correspond-
ing to properties written by the app (in depth-first order) and
aggregates the behaviors of terminal executable nodes of tra-
versed paths. When a conjunction node is reached, DEFINIT
only traverses past it if all the conjuncts have been satisfied.

Finally, to mark privileged apps exposing Init routines,
DEFINIT performs control-flow reachability analysis sim-
ilar to [10, 11] by finding a control-flow path from any ex-
ported [20, ch. 4] entry point of an identified privileged app
that invokes an Init service to the corresponding call site that
results in invoking the service.

6 Evaluation and Security Impact

To understand the prevalence and impact of exposed Init rou-
tines, we performed a large-scale study using DEFINIT on
259 stock Android v8.0 to v11.0 firmware images covering
21 of the top vendors worldwide as shown in Table 2. These
images contained a total of 64,632 pre-installed apps with
an average of 262 apps per firmware. At the time of writing,
Android v11.0 was recently released and only a few vendors
provided public Android v11.0 images.

Table 2: Summary of tested Android firmware images.

Version Vendors Firmware Apps
(#/vendor) (#/firmware)

8 19 93 (2;10;5) 18,988 (57;805;211)
9 17 75 (1;6;4) 16,809 (148;452;229)
10 14 75 (1;11;5) 23,117 (18;504;269)
11 5 16 (1;4;3) 5,718 (193;527;339)

Total 21 259 (1;11;4) 64,632 (18;805;262)
Counts are ‘total (min;max;avg)’

6.1 Prevalence of Custom Init Routines
Table 3 provides summary statistics of Init routines DEFINIT
identified in the analyzed images. Of the tested 259 firmware,
there was a total of 58,523 Init routines (223 per firmware).
Among these, 38,846 (66%) were custom routines added by
vendors. This averages to about 133 custom Init routines per
firmware, with some vendors adding as many as 360 custom
Init routines over AOSP. This shows the great extent to which

4Privileged apps can choose their UID by setting a special attribute in
their manifest files, see https://developer.android.com/guide/topics/
manifest/manifest-element#uid for details.
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Table 3: Custom and exposed Init routines prevalence per Android version. All exposed routines were custom, added by vendors.

Version Total Custom Exposed Exposed Sensitive
8 15,602 (39;355;166) 8,613 (9;210;91) 305 (0;42;3) 81 (0;15;1)
9 16,719 (188;522;220) 8,537 (41;356;112) 600 (0;64;8) 166 (0;16;2)
10 21,558 (144;527;287) 12,576 (22;360;167) 911 (0;67;12) 244 (0;14;3)
11 4,644 (179;511;273) 2,704 (29;360;159) 131 (0;46;8) 24 (0;7;2)

Total 58,523 (39;527;236) 38,846 (9;360;133) 1,947 (0;67;8) 515 (0;16;2)
Counts are ‘total (min;max;avg per firmware per version)’

vendors customize the Init process to introduce new function-
alities. To put this in perspective, AOSP has about 130 Init
routines on average, meaning that vendors introduce at least
as many Init routines as already present in AOSP.

Figure 4 shows the distribution of nodes and edges in the
IDGs constructed by DEFINIT from the firmware in our data
set. On average, more than 50% of the firmware had at least
600 IDG nodes, 500 edges, and 300 different paths from a
trigger to an executable with a path length of three or higher
(i.e., three levels of indirection within Init from the moment
a trigger is set until an executable is launched). This shows
the complexity of the data- and control-flow facts encoded in
the .rc files, which substantiates the need for an automated
system like DEFINIT to bring interesting cases to the surface.
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Figure 4: Distribution of IDG nodes, edges, and paths from a trigger
node to a terminal executable node in the identified Init routines.

6.2 Characteristics of Exposed Routines

Of these Init routines, 1,947 were exposed by an IPC entry
point of a privileged app. This averaged to about eight ex-
posed Init routines per firmware. 515 of these exposed Init
routines executed at least one sensitive command from those
listed in Table 1. Interestingly (though unsurprisingly given
the number of new routines added by vendors), all exposed
routines were custom routines added by vendors. Notably,

Table 4: Top 10 process UIDs of identified Init routines. More than
90% of exposed routines were running as system or root.

UID Total Custom Exposed Exposed
Sensitive

root 15,597 11,935 1,342 354
system 17,305 10,293 272 2
default (root) 9,764 3,146 188 113
shell 1,255 858 50 0
bluetooth 609 499 45 45
logd 599 99 45 0
graphics 351 96 3 0
wifi 1,563 603 1 1
radio 2,247 997 1 0
nfc 178 159 0 0
other 9,055 3,745 0 0
total 58,523 32,430 1,947 515

firmware images from vendors closest to AOSP (i.e., Google)
had no exposed Init routines.5

Tables 4 and 5 list the process UIDs and SELinux domains
of identified routines. More than 90% of the exposed routines
ran as root or system, the two most privileged users on An-
droid. Likewise, the majority ran under the default SELinux
domains as well (init and vendor_init). All identified ex-
posed routines had UIDs and domains that are significantly
more privileged than those assigned to third-party apps by
the system (randomly generated at install time and falls in the
untrusted_app SELinux domain). It is unclear to us why
exactly all these custom services needed to run with these
privileged defaults. It appeared as if vendors simply followed
the path of least resistance by using the defaults rather than
properly using Init modifiers to confine their custom Init rou-
tines such that they have access only to the resources and
capabilities necessary for their operation. Note that while
there may be SELinux transition rules based on the file names
of routine executables, these rules would not block exploita-
tion of an exposed routine since it is unlikely that a vendor
would add custom routines to invoke custom executables yet
fail to configure SELinux transitions to allow the executable
to function as intended. We discuss this further in §7.

The breakdown of shell scripts and binaries invoked by the
identified Init routines is shown in Table 6. In total, 2,685

5We observed routines that were exposed only via exported GUI entry
points, making them potential targets for GUI cloaking attacks [12]. We
provide measurements on these in Appendix A.5.
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Table 5: Top 10 SELinux domains of identified Init routines. The
domain init is the default domain. The domain vendor_init is the
default for routine executables located in the /vendor partition.

Domain Total Custom Exposed Exposed
Sensitive

init 27,739 11,816 988 252
rutilsdaemon 2,600 2,545 632 204
vendor_init 24,497 15,719 102 15
dumpstate 183 176 50 12
junklog 90 90 29 2
logserver 133 66 28 2
xlogcat 25 25 18 0
kapd 96 96 14 0
logoem 32 32 12 12
glogcat 18 0 12 0
other 3,110 1,865 62 16
Total 58,523 32,430 1,947 515

Table 6: Executables used by Init routines in the analyzed firmware.

Type Custom Count
Total used

Script • 2,685 (1;100;10)
Script 310 (1;9;1)
Binary • 16,772 (1;136;64)
Binary 18,419 (1;131;70)

Used by an app-triggered Init routine
Script • 1,606 (1;68;6)
Binary • 863 (1;12;3)
Binary 504 (1;9;2)

Used by an exposed Init routine
Script • 1,161 (0;57;4)
Binary • 414 (0;9;2)
Binary 181 (0;8;1)

Exposed and calls a sensitive command/API
Script • 581 (0;34;2)
Binary • 410 (0;9;2)
Binary 82 (0;4;0.3)

Counts are ‘total (min;max;avg per firmware)’

unique custom scripts (10 per firmware), 310 known scripts,
16,772 custom binaries (64 per firmware), and 18,419 known
binaries were used by Init routines. Of these, 1,606 custom
scripts, 863 custom binaries, and 504 known binaries were
used by Init routines triggered from pre-installed apps. With
regard to exposed routines, 1,161 custom scripts, 414 custom
binaries, and 181 known binaries were called by at least one
exposed Init routine. On average, there were four scripts and
two binaries invoked by an exposed Init routine per firmware.
Of those exposed scripts and binaries, 581 custom shell scripts
and 410 custom binaries invoked at least one sensitive com-
mand. These numbers show the significant changes vendors
introduce to the Init process. The results also suggest that
vendors are more likely to use custom shell scripts rather than
binaries for their custom app-triggered Init routines, probably
due to the ease of developing shell scripts.

6.3 Impact of Exposed Behaviors

Table 7 shows the breakdown of exposed sensitive routines,
grouped by behavior category. We discuss the overall prospect
of these routines below and provide the full breakdown per
sensitive command in Table A.6. Our discussion here is fo-
cused on exposed routines that can be abused without user
interaction with the pre-installed apps exposing the sensi-
tive functionalities. We report on routines that require user
interaction in Appendix A.5.

Behaviors common to multiple vendors were for routines
calling commands from the sensitive data, networking, and
process management categories. The top category in terms
of exposed routines was for intrusive routines accessing sen-
sitive device data, such as memory dumps, system logs, and
network traffic captures. This totaled to 336 unique rou-
tines across 65 firmware from 11 vendors. These routines
were exposed by 109 different pre-installed apps. The major-
ity (298) of these routines were triggered directly (i.e., via
ctl.start=<service>) whereas 38 were triggered by setting
system properties satisfying a trigger. The impact of these
exposed routines accessing sensitive data can be significant
if this data is transferred by the routines to shared storage
on the device, making it accessible to all apps (privileged or
not). These routines tend to expose user data through various
debugging and development mechanisms such as capturing
detailed log messages from all processes and dumping the
state of all Android framework services.

For the 65 routines in the networking category, the majority
were routines creating local domain socket servers. These lo-
cal domain socket servers provide a communication interface
for other processes on the device to interact with the server
process, potentially introducing security weaknesses. Unfortu-
nately, identifying the behavior lying behind the server socket
process is a very challenging task that requires knowledge of
the specifics of the protocol implemented by the involved pro-
cesses. Nevertheless, various instance have been discovered in
the wild where missing authorization checks in domain socket
server processes has resulted in critical code and command in-
jection vulnerabilities in privileged system processes [21–24].

Of the 30 routines in the process management category,
the majority were delegating to Android framework services
via the service command. The service command was gen-
erally used in conjunction with debugging routines to dump
a snapshot of the active framework services on the system
using the service list command. An interesting case is the
aee-reinit Init service that uses the ptrace command. Upon
manual inspection of the binary implementing the Init routine,
it appeared to be a process that attaches to a target process
using the ptrace command to dump its state, which can result
in information leakage as third-party apps are not allowed to
call ptrace on other processes on the system.

The device settings category had 13 identified routines to
modify device-wide settings. The svc command was the most
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Table 7: Init routines exposing sensitive functionalities, the number of apps exposing them, and the impacted firmware. Multiple matches in
the same category are counted only once per unique routine.

Category Total Direct Indirect Apps Firmware Vendors
Device settings 13 13 0 13 13 2
Sensitive data 336 298 38 109 65 11
Networking 65 16 49 65 62 9
Package management 9 0 9 9 9 3
Permission control 9 8 1 9 9 2
Power management 6 0 6 5 5 3
Process management 30 25 5 28 28 5
UI interaction 48 29 19 48 42 6
Total (unique) 430 323 107 173 101 13

commonly used among these routines. Certain pre-installed
apps used the svc power reboot command to reboot the
device which can be repeatedly initiated by an adversary to
prevent the user proper access to the device.

For routines in the package management category, the most
sensitive behavior was loading a kernel module which was
detected in nine firmware. We found a particularly interesting
case where the kernel module was loaded from a writeable
path, which may result in a third-party app being able to over-
write the kernel module and achieve arbitrary code execution
in kernel space. Most of the other cases, based on their routine
names, appeared to be for sniffing network packets.

The permission control category had only nine exposed
Init routines, but this category contains some of the most sen-
sitive commands. Specifically, the setenforce 0 command
disables SELinux, essentially exempting all processes from
their Mandatory Access Control policies, allowing them to
perform actions that would otherwise be blocked such as set-
ting system properties, accessing sandboxes, and connecting
to restricted framework services. Surprisingly, we found seven
such instances in six firmware (one can be exploited without
user interaction, six by clicking a button) all from one popular
vendor from the largest manufacturer group globally, where
SELinux can be disabled through an exposed Init routine.

The six routines in the power management category per-
tained to commands that initiate a reboot of the system. These
may appear uninteresting, although they can be leveraged by
an attacker to perform controlled DoS attacks by continuously
rebooting the system, which, for example, can be leveraged in
ransom DoS [25]. Of these six routines, five allowed an app
to perform a programmatic reboot spanning three different
vendors. This can also result in factory resetting the device
and erasing all user data in certain cases [11].

The UI interaction category had 48 Init routines which
were generally used to send IPC messages using the am
command. All of the messages were implicit, lacking a
named destination, except for few messages for opening the
results of an operation in the default HTML viewer (i.e.,
com.android.htmlviewer). We observed some routines in-
jecting key events for the “power” and “menu” buttons in the
foreground device UI using the input command. While this

likely has low impact, injecting these events may still cause
undesirable effects on the system when used at inopportune
times. Moreover, uncovering additional key events can be
used to build a UI interaction toolkit for use by an attacker.

6.4 Vulnerability Studies

We further inspected routines that exhibited more specialized
behaviors and manually inspected them to verify their poten-
tial security impact when triggered by an attacker. Table 8
shows the outcome of this analysis. Thus far, we have man-
ually verified 89 vulnerabilities in 34 unique apps from 30
firmware from 6 vendors. Our disclosure process is still on-
going, and three vendors so far have confirmed our findings
(covering 49 flaws in 11 firmware). Again, we only focus
here on vulnerabilities that can be exploited without user in-
teraction with the pre-installed apps. There are another 134
vulnerabilities in 52 unique apps from 35 firmware from 9
vendors that can be exploited but require user interaction with
the pre-installed apps, which we outline in Table A.5.

Verification Methodology. The verification involved man-
ually verifying the reported code paths to ensure the following:
(1) There are no runtime checks (e.g., dependencies on UID,
permissions, signatures, package names) on the path that may
increase the attack requirements beyond what is accessible to
a third-party app. (2) The privileged app sets the expected sys-
tem properties to the required value. (3) The system properties
trigger the expected Init routine. (4) The executable, corre-
sponding to the triggered Init routine, performs the reported
security-sensitive functionality.

For the stock Android devices we were able to obtain, we
manually developed exploits to dynamically verify 53 findings
(none requiring user interaction besides installing and running
our attack app). Note that dynamically verifying all findings
on their corresponding native Android devices presents signif-
icant difficulty since it requires purchasing Android devices
for each vendor/model/version combination.
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Table 8: Verified vulnerabilities and the functionalities they allow an
unprivileged attack app to perform programmatically via inadequate
access control exhibited by pre-installed apps.

Impact Total Apps Firmware Vendors Versions
Read system logs 11 11 11 3 8,9,10
Record screen 5 5 5 1 8,9
Sniff modem traffic 7 7 7 2 8,9
Sniff Wi-Fi traffic 8 8 8 2 8,9
Sniff Bluetooth traffic 2 2 2 1 8,9
Read Wi-Fi passwords 3 3 3 1 9,10
Read dumpstate 7 7 7 2 8,9
Read dumpsys 10 10 10 3 8,9,10
Read kernel logs 10 10 10 3 8,9,10
Read bugreport 3 3 3 2 9
Read radio logs 6 6 6 2 9
Load kernel module 9 9 9 1 8,9
Disable SELinux 1 1 1 1 8
Reboot device 5 5 5 3 9,10
Write to node device 2 2 2 1 8
Total (unique) 89 34 30 6 8,9,10

Findings. In addition to disabling SELinux, loading kernel
modules, and rebooting the device, we found instances where
third-party apps can indirectly obtain the following data due
to exposed Init routines: system logs (main log, kernel, ra-
dio), screen captures, telephony data (SMS messages, calls),
extensive system dumps (dumpsys, dumpstate, bug reports),
and packet captures (modem, Wi-Fi, Bluetooth). Overall, the
impact is significant. As shown in Table 8, numerous sensi-
tive capabilities are exposed through Init routines that can
be indirectly triggered by an unprivileged third-party app,
manifesting as privilege escalation vulnerabilities. The vul-
nerabilities we found pose serious threats to the security and
privacy of end users.

In the following, we discuss some representative cases that
we have exploited on stock devices. Note that we could only
exploit a limited number of findings on live devices due to the
lack of physical devices, in our possession, compatible with
each impacted firmware in the data set.

Case Study 1: Disabling SELinux. Security-Enhanced
Linux (SELinux) is the default security module to manage
mandatory access control security policies for all processes
on the device. Since Android 5.0, SELinux has been enabled
by default, serving as an integral part of the Android security
model. We identified a severe vulnerability where an exposed
Init service can be used to globally disable SELinux enforce-
ment. This impacted six different firmware from the same
vendor where one of the seven detected instances can be ex-
ploited without user interaction, whereas the other six require
a button click. In the affected vendor’s firmware, they have
included a custom Init service named wifitest that, when
launched, executes a shell script as the root user. The shell
script calls setenforce 0 to disable SELinux, then resets the

Wi-Fi interface. Interestingly, in the same .rc file where the
wifitest service is declared, two property triggers have the
actions to start this service. One impacted firmware had a priv-
ileged app that can be used by attackers to launch the service
in the background, without any user interaction. Additionally,
five firmware had six privileged apps that could also launch
the service upon clicking on a button in their exported GUI.

Case Study 2: Capturing modem and network traffic.
Certain Android 9 firmware from two popular Android ven-
dors contained a pre-installed app that utilizes Init services
to capture modem and network traffic. On these firmware,
third-party apps can send an IPC message to an exported
broadcast receiver component of the pre-installed app to start
and stop capturing of modem and network traffic on demand.
The pre-installed app interacts with multiple custom Init ser-
vices to capture traffic and store them on external storage.
These Init services were all running as the root user and used
a common shell script where each service passed a different
hard-coded string parameter to the shell script to capture data
from different interfaces. The script captured traffic to inter-
nal storage and then moved the captured traffic to external
storage upon completion. These captured records contained
significant amount of sensitive data, such as network packets,
SMS messages, and phone calls. We were notified by the two
impacted vendors that this flaw was introduced by mistake
into production builds by a common chipset provider that
both vendors had used, and in fact impacted more firmware
than in our data set.

Case Study 3: Reading sensitive logs. Three popular An-
droid vendors exposed sensitive system logs via Init services
that write the resulting log files on external storage. These
system logs provide a timestamped trace of messages, events,
and stack traces. Android offers a shared logging mecha-
nism wherein any app can write arbitrary log messages using
standard framework APIs. Processes do not always sanitize
sensitive user data prior to writing it to the log; therefore, the
Android system does not allow third-party apps to access the
global system log. Since Init services tend to run as privileged
users, they can access sensitive logs from all processes. In
each of the three cases, the vendors used an Init service to
execute a shell script as the root user to execute the logcat
command. Two of the three vendors also exposed the output
of the dumpsys command that calls routines in each frame-
work service to dump its state which tends to contain sensitive
information. Active monitoring and mining of these logs us-
ing regular expressions by an adversarial local process poses
a serious risk to user’s security and privacy.

Case Study 4: Screen recording. One vendor had five
firmware that exposed the capability to initiate a screen record-
ing wherein the resulting recording file is made available to
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other processes on external storage. A screen recording pro-
vides an actual screen capture and allows an adversary to mon-
itor the contents of device screen and the actions taken by a
user. The recordings can reveal data such as passwords, credit
card numbers, notification and message content, and other
sensitive information. The screen recording was performed
in a shell script using the standard screenrecord command
where the recording has a duration of 30 min.

6.5 Runtime Performance of DEFINIT

We conclude our evaluation by providing measurements of
the runtime performance of DEFINIT. We implemented
DEFINIT in 7K-SLOCs of Python on top of BinaryNinja [26]
for ELF analysis and Kryptowire’s internal Android static
analysis engine [27] for app analysis. We conducted our anal-
ysis on one Ubuntu 20.04 server with 8-core Intel(R) Xeon(R)
E5-4620 2.20GHz and 512 GiB of RAM.

DEFINIT took about 5 min on average to unpack a
firmware, with 90% of the images finished unpacking in less
than 20 min. Processing Init files, collecting traces, and build-
ing IDGs took about 30 min on average, with 90% finishing
in less than 50 min. Analyzing pre-installed apps took 7 min
on average with 90% of the apps finishing in less than 10 min.
Each firmware image was analyzed to completion separate
from other images and we did not perform any particular opti-
mizations to improve the performance of DEFINIT. Overall,
90% of the firmware finished in less than 70 min end-to-end
which is reasonable in practice.

7 Discussion and Future Work

Analysis Limitations. The goal of this study is to explore
the impact of Init routines added by vendors to Android and
called from privileged apps with potentially lax app compo-
nent access control. Towards this end, we developed DEFINIT
to help us conduct this study. The goal of DEFINIT itself is
not to automatically reason whether an identified exposed
routine is exploitable or not, but to identify instances that are
of potential security impact, bringing them to the surface for
an analyst to further investigate and verify. Automatically
reasoning about exploitability is an extremely challenging
task that has no viable solution in practice [28, 29].

The analysis we performed in §5 is conservative as we
tuned our analysis to avoid the constructs that are known to re-
sult in false information flows when performing static analysis.
These constructs are commonly handled in an unsound man-
ner in practice to avoid overapproximations that may result
in too much noise in the findings that analysts have to comb
through. For instance, the ICFGs constructed by DEFINIT
for ELF binaries and apps were under-approximated to avoid
noise in the results as we limited indirect/virtual call resolu-
tion to only indirect calls that have one possible candidate
callee based on the call receiver information available at an

indirect call site. Other constructs that we did not handle in-
clude reflection, flows through containers, inter-component
communication, and flows that cross between managed and
native code (e.g., flows through JNI calls). We also considered
permission-protected components as unexported, regardless
of the permission protection level [30].

For trace collection, we could have opted for more involved
techniques or even firmware emulation [31, 32], though this
comes with a multitude of nontrivial challenges beyond the
scope of this work [33–35]. From a practical perspective,
we believe our analysis was at an adequate level given the
findings and goals of this study. More sophisticated analy-
sis can be incorporated in the future to detect obfuscated or
deeply-buried behaviors.

Manual Effort. The manual steps performed in this study
were pertinent to shortlisting sensitive commands and APIs,
developing the detection rules, and analyzing the annotated
traces produced from DEFINIT that matched interesting rules.
Enumerating and shortlisting the sensitive commands took
one day for three persons.

Developing the detection rules used in DEFINIT took about
four workdays for one person. We believe our selection pro-
vides reasonable coverage for the purpose of this study, though
it is straightforward to add more commands and rules in the
future as needed. This step is standard in behavioral binary
analysis in practice and is unlikely to get fully automated
as it requires expert knowledge. It may be possible to au-
tomate rule creation to some extent by using data mining
techniques [36, 37] on a large labeled corpus of traces of
Android-specific potentially sensitive behaviors or a generic
model of what constitutes a sensitive behavior on Android.
This can be an interesting direction for future work.

Analyzing and verifying the findings in Table 8 took about
seven workdays for one person. Since the execution paths
identified by DEFINIT cross multiple OS layers, this makes
end-to-end automated dynamic verification extremely chal-
lenging, which, at a minimum, would requite a rooted tar-
get device and an advanced Android-aware, cross-layer dy-
namic symbolic execution engine. Overall, the manual effort
involved was quite reasonable given the number of firmware
and apps in our data set and the number of cases we verified.

SELinux and Exploitation. We made the assumption that
vendors have configured their firmware images properly for
their customizations to work as intended. This includes config-
uring the necessary SELinux labels, rules, and transitions for
their custom routines to function. This also extends to the use
of Vendor Init [38] where vendors are expected to place ven-
dor Init .rc files and binaries in /vendor as needed for them
to run under a SELinux domain separate from the system Init
domain. DEFINIT detects behaviors that can be exploited
through individual pre-installed apps, and all constructs (prop-
erty names, values, exceutables, commands and APIs) along
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a vulnerable path are hardcoded. Therefore, SELinux transi-
tions should not block these flows since the involved actors
(pre-installed apps, Init routines and their executables) are
the ones expected by SELinux and intended to operate in
this manner, unless there are considerable errors on the part
of vendors due to a lack of testing. In the cases we dynami-
cally verified, we did not encounter any SELinux restrictions
preventing exploitation.

For the scenarios where one sensitive behavior could be
split between multiple apps (e.g., attacker invokes one pre-
installed app to record a video then a different app to move
files to external storage), it may be possible that SELinux
prevents exploitation of these behaviors if the triggered rou-
tines have different SELinux contexts and the vendor did not
add transitions that allow these behaviors to manifest. We
leave detecting these multi-app behaviors and handling their
SELinux constraints to future work.

Threats to Validity. In our implementation of DEFINIT,
we did not check for dynamic access control constructs (e.g.,
dynamic permission checks, UID checks, confirmation dia-
logues) that may fall on the path from a pre-installed app to the
call site setting a system property. We manually checked only
the findings in Table 8 for these constructs during verification.
Therefore, the results provided in Tables 7 and A.6 should
be taken with this in mind. Reasoning about dynamic access
control automatically is a challenging task that requires mod-
eling relevant code constraints dominating a call site setting a
system property, modeling runtime environment constraints,
and solving these constraints using a symbolic solver, which
we leave for future work.

While we tried to cover a representative sample of the An-
droid market, our firmware data set was not uniform across
all vendors and Android versions. Some of the vendors in
our data set (e.g., Itel) also had significantly smaller firmware
images and fewer Init routines compared to others. The un-
packing process of some of the proprietary image formats in
our data set may have also missed some files and partitions.
Therefore, the differences between vendors in our results may
not be statistically significant to substantiate differences in
the overall security posture of the vendors and should be
interpreted carefully in this regard.

Potential Countermeasures. There are various measures
that AOSP, Google, and vendors can take to reduce the secu-
rity impact of Init customizations. The first step is perhaps
for Android Init to default child processes spawned from Init
to an unprivileged user and SELinux domain (e.g., a nobody
user). Defaulting to a low-privilege user and domain can con-
fine the impact of exploiting exposed routines and binaries
mistakenly leftover by vendors.

Second, given that Google has established a set of require-
ments as part of the Android Compatibility Definition Doc-
ument (CDD) [39] that vendors must adhere to in order to

brand their devices as Android-compatible, the CDD should
enforce strict requirements on vendors to not add privileged
custom Init routines that can be programmatically triggered
from outside Init itself unless the functionality is key for
normal system operation. This can be a mundane process
and may not be straightforward to test by the CDD, but it is
essential to confine the impact of exploiting potential flaws
introduced by Init customizations.

Third, Android can block interaction between unprivileged
apps and pre-installed apps that set system properties. In fact,
Android can go a step further by blocking interaction between
third-party apps and privileged apps by default unless the user
explicitly grants a third-party app the permission to interact
with a pre-installed app. This step, despite putting the burden
on the user, could easily thwart most privilege-escalation at-
tacks from third-party apps trying to parasitize on privileged
apps without user consent. Adopting this approach would
likely need to be phased in over time in order to not immedi-
ately break the current open communication model Android
employs among apps co-located on an Android device. In
addition, vendors should enforce proper access control at
the boundaries of their privileged apps to minimize confused
deputy attacks initiated by enterprising third-party apps trying
to indirectly trigger sensitive functionality.

Finally, Android SELinux policies could default to pre-
venting executables launched by Init routines from writing
to external storage. This could easily block multiple of the
flaws identified in our study that capitalize on leaking infor-
mation to a publicly-readable path on external storage. A
better separation of pre-installed apps where the ones that
are likely to be interacted with by third-party apps are not
allowed to set Init properties or perform sensitive operations
may also help here. Some of the most severe cases (e.g., dis-
abling SELinux) should also display a clear warning and ask
the user if the action that was initiated programmatically can
proceed. Specifically, enforcing user interaction for many of
the extensive system logging routines can help to safeguard
the user. This is by no means a perfect solution, but if ex-
plained clearly, it will allow the user to have greater control
of the security of their device.

8 Related Work

Numerous prior works have studied the security issues intro-
duced by Android vendor customizations at different layers of
the Android OS. At at the application layer, Woodpecker [2]
was among the very first studies to detect capability leakages
on Android. It analyzed eight devices and found that 11 out
of 13 privileged permissions can leak to unprivileged apps.
SEFA [3] analyzed 10 firmware images and found that over
85% of their pre-installed apps were overprivileged. Hare-
Hunter [4] discovered thousands of hanging attribute refer-
ences (Hares) in 97 firmware images, allowing unprivileged
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apps to claim access to potentially sensitive functionalities by
using attributes hardcoded in pre-installed apps.

More recently, Gamba et al. [40] conducted a comprehen-
sive study of multiple devices and identified several instances
of advertising and data collection without user consent. Firm-
Scope [11] performed a large scale static analysis study of
pre-installed apps in more than 2000 firmware images from
top Android vendors and identified numerous privilege esca-
lation vulnerabilities due to improper access control in pre-
installed apps. The authors of FirmScope identified a few
number of apps that were able to set arbitrary system prop-
erties, which while relevant to our study, they did not assess
the impact of setting these properties nor how they may be re-
lated to custom Init routines added by vendors. Nevertheless,
privilege-escalation flaws in pre-installed apps in general can
potentially enable more attack vectors for launching sensitive
Init routines, e.g., by exploiting a command execution flaw in
a privileged app to directly call an executable launched by a
sensitive Init routine running with the system UID.

For security issues introduced to the Android framework
layer (sometimes referred to as the Android middleware), Tian
et. al. [9] analyzed 2,000 firmware images and identified 3,500
AT Commands invokable over USB, multiple of which can
perform sensitive functionalities, such as bypassing the screen
lock and factory resetting the device. Most of these commands
were hardcoded in custom ELF libraries added by vendors to
the framework as part of the Radio Interface Layer (RIL) yet
a few of them were also introduced by privileged pre-installed
apps. ARF [10] analyzed the AOSP framework and identified
cases of confused deputies due to inconsistent access checks
in framework service components. FANS [41] fuzzed native
framework services on six Android 9.0 devices and identified
30 vulnerabilities and thousands of crashes. These studies are
complimentary to our work. Studying Init capabilities leaked
through vendor customizations to the Android framework
itself (e.g., via new framework APIs introduced by vendors)
is a possible interesting area for future work.

At the kernel level, ADDICTED [14] analyzed vendor de-
vice drivers and found multiple privilege escalation vulnera-
bilities that allow third-party apps to perform sensitive func-
tionalities without permission by talking to open interfaces
in custom device drivers. BootStomp [13] found eight vul-
nerabilities in the bootloaders used by a number of devices,
allowing attackers to potentially compromise the entire chain
of trust established at boot time or cause denial of service.
BigMac [16] analyzed the SELinux policies on two devices
and identified multiple policy inconsistencies that allow un-
privileged actors to load kernel modules and communicate
with root processes.

To the best of our knowledge, none of the prior studies have
analyzed vendor customizations of the Android Init process
that are visible at the application layer, and the security impact
of these changes, which is what we focus on in this study.

9 Conclusion

Android Init routines can provide privileged operation in-
terfaces to privileged system apps that can trigger them by
setting system properties. The privileged capabilities of these
Init routines can be exposed to unprivileged third-party apps
through open interfaces in privileged apps triggering the rou-
tines. To understand the prevalence and security impact of
exposed Init routines, we designed DEFINIT as a system
to help detect Init routines exposed by privileged apps and
their behaviors. We studied 259 firmware covering Android
8 to 11 from the top 21 vendors worldwide and identified
numerous vulnerabilities that allow unprivileged third-party
apps to perform sensitive functionalities, including capturing
network traffic, reading system logs, and disabling SELinux,
among others. Our findings demonstrate the significance of
these changes to Init and the need for rigorous Android regu-
lations to reduce and confine the impact of potential security
weaknesses introduced by vendors.
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A Appendix

A.1 Analyzed Firmware

Table A.1 provides the details of the firmware images ana-
lyzed by DEFINIT. At the time of writing, Android v11.0
was recently released and only a few vendors provided public
Android v11.0 images.

Table A.1: Summary of the tested Android firmware.

Vendor #Firmware #Apps v8 v9 v10 v11
Alcatel 6 1,088 4 2 0 0
ASUS 15 4,093 5 5 5 0
BLU 13 2,034 5 6 2 0
Coolpad 4 609 4 0 0 0
Google 20 3,885 5 6 5 4
Hisense 10 1,489 10 0 0 0
HTC 5 1,148 5 0 0 0
Huawei 6 574 6 0 0 0
Infinix 13 2,896 2 5 6 0
Itel 9 1,529 4 5 0 0
Lava 15 2,579 10 5 0 0
Lenovo 5 774 0 4 1 0
Nokia 11 2,578 3 3 5 0
OnePlus 19 6,450 5 5 5 4
Oppo 19 5,792 5 5 6 3
Realme 14 4,652 0 3 11 0
Samsung 22 9,700 4 4 10 4
Tecno 15 3,142 4 5 5 1
Vivo 9 2,167 4 1 4 0
Xiaomi 19 5,293 5 6 8 0
ZTE 10 2,160 3 5 2 0
total 259 64,632 93 75 75 16

A.2 Firmware Acquisition

We downloaded firmware images from the following sources:

Alcatel https://alcatelfirmware.com
ASUS https://www.asus.com/support/
Google https://developers.google.com/android/images/
Samsung https://www.sammobile.com
HTC https://www.htc.com/us/support/
Huawei https://huaweistockrom.com/
OnePlus https://www.oneplus.com/support/
Oppo https://oppo-au.custhelp.com
Vivo https://vivofirmware.com
Xiaomi https://c.mi.com/global/miuidownload/index
ZTE https://www.ztedevices.com/en/support/
Other https://androidmtk.com

https://www.stockrom.net
https://firmwarecare.com
https://firmwarefile.com
https://easy-firmware.com

A.3 Market Share of Impacted Vendors

Table A.2 shows the global market shares of the impacted
vendors (anonymized) and their shares of verified vulnerabili-
ties in our findings. Note that these are market shares of the
vendors rather than the specific impacted devices and Android
versions, which we were unable to obtain. We used Android
vendor market share data from AppBrain [42].

Table A.2: Anonymized vendor data showing global market share
and their ratio of introduced vulnerabilities.

Vendor %Vulnerability %Market Share
A 41% 8.9%
B 18% 2.8%
C 16% 7.6%
D 6.3% 0.5%
E 4.9% 0.5%
F 4.5% 0.6%
G 3.9% 10.8%
H 2.4% 0.6%
I 1% <0.4%
J 1% <0.4%
K 1% <0.4%

A.4 Rule Samples

In the following, we present some of the rules used by
DEFINIT. Syntactic details have been abstracted and sim-
plified for the sake of presentation.6

Disable SELinux One of the rules with the greatest impact
on the overall security of the system is disabling SELinux en-
forcement. Below is a rule that detects instances of executing
a command to disable SELinux.

conditions :
setenforce 0
| setenforce permissive
| echo 0 > /sys/fs/selinux/enforce

6Additional rules are available at https://kryptowire.com/definit.
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Sniff Modem Traffic The following rule detects calls to
the diag_mdlog utility to capture and dump modem traffic
to a path on external storage, which is readable by any app
that has been granted permission to read external storage.
conditions :

(diag_mdlog|diag_mdlog_system|oppo_diag_mdlog) * ( - f|-o
) $sdcard/*

Here, $sdcard is a common internal rule that matches a
path prefix on external storage:
sdcard: /sdcard | /mnt/sdcard | /storage/sel f/primary

| /storage/emulated/0 | /data/media/0

Read System Logs The following rule captures the leakage
of Logcat logs to external storage.
conditions :

logcat * ( - f|>) $sdcard/*
| logcat * ( - f|>) *

(mv|cp) * $sdcard/*

Record Screen The following rule detects the usage of the
screen record command where the resulting video file is stored
on external storage.
conditions :

screenrecord * $sdcard
| screenrecord *

(mv|cp) * $sdcard

Factory Reset The following rule detects the sending of a
broadcast Intent message that initiates a factory reset of the
device, wiping all user data.
conditions :

am broadcast * -a android. intent . action .MASTER_CLEAR *

Read Kernel Logs The following rule detects access to the
the kernel logs when leaked to a path on external storage.
conditions :

(dmesg|klogd|/proc/kmsg|/dev/kmsg) * ( -o|>|-f ) $sdcard
| (dmesg|klogd|/proc/kmsg|/dev/kmsg) *

(mv|cp) * $sdcard

Sniff Network Traffic The following rule detects calls to
the tcpdump utility to capture and dump network traffic to a
path on external storage.
conditions :

tcpdump * (-w|>) $sdcard/*
| tcpdump (-w|>) *

(mv|cp) * $sdcard

Read Wi-Fi Passwords The following rule detects access
to the contents of the /data/misc/wifi/wpa_supplicant
.conf file containing the Wi-Fi passwords which are subse-
quently written to external storage.
conditions :

cp /data/misc/wifi/wpa_supplicant. conf $sdcard
| cat /data/misc/wifi/wpa_supplicant. conf > $sdcard

A.5 Routines Exposed via the GUI
We provide measurements of exposed Init routines and manu-
ally verified vulnerabilities that were only reachable via GUI
entry points in Tables A.3 to A.5. Attackers may be able to
exploit some exposed routines by tricking the user into inter-
acting with the GUI of an exported component in a privileged
app. While this requires user interaction, it is still a valid
attack vector with a relatively low complexity [12].

Table A.3: Exposed routines only reachable via the GUI.

Version Exposed Exposed Sensitive
8 221 (0;12;2.4) 42 (0;5;0.5)
9 109 (0;5;1.5) 44 (0;5;0.6)

10 78 (0;4;1.0) 35 (0;3;0.5)
11 27 (0;4;1.7) 9 (0;4;0.6)

Total 435 (0;12;1.7) 130 (9;5;0.5)
Counts are ‘total (min;max;avg per firmware per version)’

Table A.4: Exposed functionalities only reachable via the GUI.

Category Total Apps Firmware Vendors
Device settings 37 31 21 8
Sensitive data 8 8 5 2
Networking 32 32 32 9
Package management 29 29 17 3
Permission control 6 6 5 1
Power management 23 17 14 7
Process management 54 54 51 12
UI interaction 0 0 0 0
Total (unique) 103 89 71 14

Table A.5: Verified vulnerabilities requiring user interaction and the
functionalities they allow an unprivileged attack app to perform.

Impact Total Apps Firmware Vendors Versions
Read system logs 11 11 11 3 9,10
Sniff modem traffic 13 13 13 3 9,10,11
Sniff Wi-Fi traffic 7 7 7 2 10
Sniff Bluetooth traffic 10 10 10 2 10,11
Read dumpstate 10 10 10 2 10,11
Read dumpsys 10 10 10 2 10,11
Read kernel logs 8 8 8 2 10
Read bugreport 8 8 8 2 10
Read radio logs 10 10 10 2 10,11
Disable SELinux 6 6 5 1 8,9
Reboot into recovery 7 7 4 1 8,9
Reboot device 17 17 14 7 8,9,10
Disable Wi-Fi 15 15 8 2 9,10
Disable NFC 2 2 2 1 11
Total (unique) 134 52 35 9 8–11

A.6 Commands Called by Exposed Routines
Table A.6 shows the breakdown of sensitive commands called
by the exposed Init routines identified by DEFINIT.
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Table A.6: Init routines calling sensitive commands/APIs, the number of apps exposing them, and the impacted firmware. Multiple matches for
the same command/API are counted only once per unique routine.

Category Command Total Direct Indirect Apps Firmware Vendors
Device settings hid 0 0 0 0 0 0
Device settings settings 0 0 0 0 0 0
Device settings locksettings 0 0 0 0 0 0
Device settings svc 37 15 22 31 21 8
Device settings ime 13 13 0 13 13 2
Sensitive data atrace 76 76 0 46 24 2
Sensitive data bugreport 19 16 3 19 19 3
Sensitive data content 0 0 0 0 0 0
Sensitive data diag_klog 0 0 0 0 0 0
Sensitive data diag_mdlog 20 1 19 7 7 3
Sensitive data diag_socket_log 5 0 5 5 5 2
Sensitive data diag_uart_log 0 0 0 0 0 0
Sensitive data dumpstate 39 39 0 39 39 3
Sensitive data dumpsys 103 91 12 62 36 7
Sensitive data logcat 81 65 16 48 44 7
Sensitive data ramdump 30 30 0 30 30 3
Sensitive data record_stream_new 11 6 5 7 6 2
Sensitive data screencap 0 0 0 0 0 0
Sensitive data screenrecord 6 6 0 6 6 1
Sensitive data tcpdump 32 15 17 19 19 4
Networking dnsmasq 14 14 0 14 14 1
Networking ifconfig 4 0 4 3 3 1
Networking iptables 0 0 0 0 0 0
Networking telecom 0 0 0 0 0 0
Networking send 4 2 2 4 4 2
Networking sendfile 0 0 0 0 0 0
Networking sendfile64 0 0 0 0 0 0
Networking socket_local_server_bind 75 29 46 75 74 12
Package management applypatch 0 0 0 0 0 0
Package management pm 3 0 3 3 3 2
Package management dpm 0 0 0 0 0 0
Package management insmod 30 0 30 30 18 3
Package management patchoat 0 0 0 0 0 0
Permission control keystore 0 0 0 0 0 0
Permission control appops 8 8 0 8 8 2
Permission control setsid 0 0 0 0 0 0
Permission control load_policy 0 0 0 0 0 0
Permission control setenforce 7 0 7 7 6 1
Power management thermal_engine 6 0 6 3 3 1
Power management __reboot 11 11 0 11 11 6
Power management android_reboot 13 4 9 13 10 2
Power management reboot 26 16 10 22 18 8
Process management cmd 2 0 2 1 1 1
Process management killall 0 0 0 0 0 0
Process management killpg 0 0 0 0 0 0
Process management ptrace 2 0 2 1 1 1
Process management service 80 76 4 80 69 12
UI interaction virtual_touchpad 0 0 0 0 0 0
UI interaction am 34 17 17 34 31 5
UI interaction input 7 0 7 7 7 3
UI interaction sendevent 0 0 0 0 0 0
UI interaction monkey 12 12 0 12 12 2
UI interaction uiautomator 0 0 0 0 0 0
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