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ABSTRACT

Binary code similarity detection, which answers whether two pieces
of binary code are similar, has been used in a number of applications,
such as vulnerability detection and automatic patching. Existing
approaches face two hurdles in their efforts to achieve high accu-
racy and coverage: (1) the problem of source-binary code similarity
detection, where the target code to be analyzed is in the binary
format while the comparing code (with ground truth) is in source
code format. Meanwhile, the source code is compiled to the compar-
ing binary code with either a random or fixed configuration (e.g.,
architecture, compiler family, compiler version, and optimization
level), which significantly increases the difficulty of code similarity
detection; and (2) the existence of different degrees of code similarity.
Less similar code is known to be more, if not equally, important in
various applications such as binary vulnerability study. To address
these challenges, we design BugGraph, which performs source-
binary code similarity detection in two steps. First, BugGraph iden-
tifies the compilation provenance of the target binary and compiles
the comparing source code to a binary with the same provenance.
Second, BugGraph utilizes a new graph triplet-loss network on
the attributed control flow graph to produce a similarity ranking.
The experiments on four real-world datasets show that BugGraph
achieves 90% and 75% true positive rate for syntax equivalent and
similar code, respectively, an improvement of 16% and 24% over
state-of-the-art methods. Moreover, BugGraph is able to identify
140 vulnerabilities in six commercial firmware.
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1 INTRODUCTION

The binaries are widely running in the exponential number of com-
puting devices, such as smartphones, Internet of Things (IoT), and
computers. Binary code similarity detection has a wide range of
applications, such as vulnerability detection [14, 20, 21, 41], mal-
ware analysis [38], plagiarism detection [36], and security patch
analysis [58]. The traditional approach for binary code similarity
detection takes two different binary codes as the inputs (e.g., the
whole binary [18], functions [14, 21, 54], or basic blocks [60]), and
computes a measurement of similarity between them. The assump-
tion is that if two binaries were compiled from the same or similar
source code, this approach would produce a high similarity score.

In contrast to the aforementioned binary-binary code similarity,
this work highlights a key aspect of the problem, that is, source-
binary code similarity detection, where the code to be analyzed is in
the binary format while the one for comparison is in the source code
format. For example, as many open-source libraries are widely used,
the vulnerabilities, such as those in OpenSSL and FFmpeg, are also
inherited by closed-source applications (binaries) [20, 21, 41, 54].
In this scenario, although the source code of the application is
unavailable, one can still leverage the availability of the open-source
libraries to detect the existence of a similarity. Recent research
has identified a similar problem but limited for Android binary
patching [17] and Android firmware analysis [59].

For this type of problems, traditional binary-binary code simi-
larity detection methods would first compile the source code with
a particular configuration, and then compare the resultant binary
against the other target binary. Unfortunately, such an approach
faces two major challenges that prevent them from achieving high
accuracy and coverage:

Challenge #1: canonicalize the source and binary code. In
the problem of source-binary code similarity, because the two in-
puts are in different formats, one needs to canonicalize them into
the same representation for comparison. Clearly, there are a large
number of different compilation configurations that can be used,
differing in terms of the compiler (e.g., gcc and llvm), version num-
ber (e.g., gcc and llvm each have tens to hundreds of versions),
parameters (e.g., at least four optimization levels for gcc and llvm),
and the target architecture (e.g., x86 and arm). In this paper, we
use the term of provenance to represent the configuration used for
compiling a binary code.

Figure 1 shows an example of three different binary codes com-
piled from the same source code (a). In this example, the binary code
in Figure 1 (b) and (c) are similar as they share the same compiler
family (llvm), optimization level (O1), and target architecture (x86),
with the only difference in compiler version (version 3.3 vs. 3.5). In
contrast, the code in Figure 1 (d) is drastically different, due to its
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(b)  Assembly  code  of  x86-­llvm-­3.3-­O1

(a) An  example  source  code  with  
integer  overflow  (both  i *  i and  
result can  exceed  the  maximum  
integer  value)

int square_sum(int a) 
{

int result = 0;
int i;
for(i=1; i<a; ++i) 
{

result += i * i;
}
return result;

}
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<square_sum>:
push ebx
push edi
push esi
mov edi, [esp+0Ch+4]
cmp edi, 2
jl loc_804847D

loc_804847D:
xor eax, eax

lea eax, [edi-2]
...
jmp loc_804847F

loc_804847F:
pop esi
...
retn

lea eax, [edi-2]
...

loc_80484AD:
pop esi
...
retn

<square_sum>:
push ebx
push edi
push esi
mov edi, [esp+0Ch+4]
xor eax, eax
cmp edi, 2
jl loc_80484AD

(c)  Assembly  code  of  x86-­llvm-­3.5-­O1
(d)  Assembly  code  of  x64-­gcc-­4.8.5-­O3  

(codes  are  ignored  due  to  the  large  amount)

Figure 1: Code example, (a) is the source code, (b) (c) (d) show the assembly code with control flow of the binary compiled with x86-llvm-3.3-O1,

x85-llvm-3.5-O1, and x64-gcc-4.8.5-O3, respectively (the difference between (b) and (c) are shaded).

choice of compiling configuration (gcc version 4.8.5 with O3 for
the x64 architecture). In this case, both the code size and control
flow are greatly changed, mainly because of loop related optimiza-
tion techniques, e.g., tree vectorization and loop unrolling. Thus,
the binary-binary methods which rely on a single, binary level
model for similarity analysis, would undoubtedly have difficulty
in fully capturing code difference without taking into account the
compiling provenance.

Challenge #2: different degrees of code similarity. Gener-
ally speaking, there are three types of syntax similarity, from type-1
(literally same), type-2 (syntactically equivalent), to type-3 (syn-
tactically similar) [45]. Note that there is another semantic code
similarity (type-4) which we leave as part of future work. Existing
methods [20, 21, 41, 54, 60] have been shown to work well for the
type-1 code, but less desirable for other types, especially type-3.
Our own evaluation shows that when applied to the binaries com-
piled by 24 different compilation provenances from Binutils-{2.25,
2.30} and Coreutils-{8.21, 8.29}, prior work Gemini [54] can only
achieve 55% true positive rate (top-5) for type-3 similar code, which
is significantly lower compared to its 77% for type-1 similar code.

On the other hand, the type-3 code is known to have signifi-
cant importance in various applications. A recent study [26] finds
that type-3 syntactically similar code can contribute to 50-60%
of all vulnerabilities (discovered by two tools, Cppcheck [3] and
Flawfinder [4]).

Our solution. To address both challenges, we have designed
and implemented a new system called BugGraph, which detects
the source-binary code similarity in two steps. In the first step,
we canonicalize the source code and binary code with the help of
compilation provenance identification. Specifically, we identify the
compilation provenance of the target binary input, that is, figuring
out which compiler family, compiler version, optimization level, as
well as target architecture, have been used. This way, instead of
comparing with a randomly compiled binary as done before, our
method can produce a binary from the given source code with the
same provenance, thereby greatly reducing the negative impact
from the compiling process. To the best of our knowledge, we are
the first to propose this approach which starts by identifying the
provenance of the binary code and taking full advantage of the
availability of the source code.

In the second step, we design a new graph triplet-loss network
(GTN) to learn the similarity ranking in order to provide high
coverage of code similarity. Specifically, BugGraph uses an attrib-
uted control flow graph (ACFG) to capture the features of a binary
function. The model takes a triplet of ACFGs, which represent the
anchor, positive, and negative functions, as the input. The learning
goal is to ensure that the similarity between the anchor and positive
functions is higher than that of the anchor and negative. Thus, our
GTN approach can produce a ranking of code similarity, discerning
the difference among similar codes.

We have also conducted extensive evaluations on a large number
of representative datasets: (1) We perform a validation test on an
existing dataset (type-1 similarity). In this test, we are able to not
only reproduce the results reported in [54] but more importantly,
show the effectiveness and benefit of the provenance identifica-
tion. (2) We compare with three recent methods of binary code
similarity detection on a syntax similar dataset covering type-1/2/3
code. Considering the top-5 similar code as positive, BugGraph
achieves 93% true positive rate (TPR) for type-1 similarity, which
significantly outperforms 77%, 69%, and 45% of Gemini, Genius, and
BGM, respectively. For type-2 and type-3 similar code, BugGraph
achieves 90% and 75% TPR, respectively, again much higher than
the best TPRs (74% and 51%) from other methods. (3) We further
apply BugGraph to the binaries from six commercial firmware and
are able to identify 140 vulnerabilities in this case study.

In summary, we make the following contributions:

• New insight and method. This work focuses on a spe-
cial problem of source-binary code similarity detection. We
develop a two-step approach of first identifying the prove-
nance of the target binary code and compiling the comparing
source code accordingly, coupled with a new graph triplet-
loss network to rank the code similarity.
• Extensive evaluation. We implement a prototype Bug-
Graph and evaluate on various real-world datasets. Bug-
Graph outperforms previous works for the same (type-1)
code, as well as less similar (type-2/3) code.

The rest of the paper is organized as follows. Section 2 defines the
problem. Section 3 overviews BugGraph. Section 4 and 5 present
our two-step approach. Section 6 elaborates the implementation.



(a)  Original  code  of  CVE-­2015-­1792

static void do_free_upto(BIO *f,
BIO *upto) { 
if (upto) {

BIO *tbio;
do {

tbio = BIO_pop(f);
BIO_free(f);
f = tbio;

}
while (f != upto)

} else
BIO_free_all(f);

}
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(b)  Type-­1  similar  (literally  same)

static void do_free_upto(BIO *f, 
BIO *upto) { 
if (upto) {

BIO *tbio;
do {

tbio = BIO_pop(f);
BIO_free(f);
f = tbio;

}
while (f != upto)

} else
// free BIO *f
BIO_free_all(f);

}
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(c)  Type-­2  similar  (syntactically  equivalent)

static void do_free_upto(BIO *f, 
BIO *upto) { 
if (upto) {

BIO *temp_bio;
do {

temp_bio = BIO_pop(f);
BIO_free(f);
f = temp_bio;

}
while (f != upto)

} else
BIO_free_all(f);

}
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(d)  Type-­3  similar  (syntactically  similar)

static void do_free_upto(BIO *f,
BIO *upto) { 
if (upto) {

BIO *tbio;
do {

tbio = BIO_pop(f);
if (tbio == NULL)

continue;
BIO_free(f);
f = tbio;

}
while (f != upto)

} else
BIO_free_all(f);

}
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Figure 2: Source code syntax similarity types (the different parts are shaded).

Section 7 evaluates BugGraph, and Section 8 summarizes related
work. Section 9 discusses the limitation and Section 10 concludes.

2 PROBLEM STATEMENT

2.1 Problem Definition

In this work, the problem of source-binary code similarity de-
tection is referred to as computing the similarity between each
function to be analyzed from the target binary code, and the func-
tion to be compared from the source code. It can be formally defined
as follows:

Definition 1. Given two inputs, B and s, where B is the target
binary, s is the comparing function with the source code, the problem
is to compute the similarity between function s and every function b
in the binary B, i.e., sim(∀b ∈ B, s).

The similarity score is expected to be higher if the source code of
b is similar to s , otherwise lower. The source code similarity types
are defined in Definition 2.

Definition 2. Let U (·) be the normalization operation, which
normalizes the source code to a unified coding style, e.g., the Clang-
Format. This would eliminate the difference brought by the white
space, blank line, layout, and comment. Let operation D (·) show the
different content between the two codes. Given the source codes of two
functions, a and b, we can get a′ = U (a), and b ′ = U (b),
• Type-1 ⇐⇒ D (a′,b ′) = ∅.
• Type-2 ⇐⇒ D (a′,b ′) ∈ {I ,L,T }, where I ,L, and T represent
identifiers, literals, and data types, respectively.
• Type-3 ⇐⇒ D (a′,b ′) ∈ {I ,L,T , S } and share (a′,b ′) > t , where
S represents the difference in statements, including changed, added,
or deleted statements.

The share (·) function is calculated in Equation (1), where the
operator | · | denotes the lines of code (LOC), |a∩b | the shared LOC,
and t is a predefined threshold (0.5 by default).

share (a,b) =
2 ∗ |a ∩ b |
|a | + |b |

(1)

Figure 2 presents examples of similarity types. The original
source code shown in Figure 2(a) has a vulnerability of denial of ser-
vice (infinite loop) when the attacker controls the inputs to trigger a
NULL value of a BIO data structure. Figure 2(b)(c)(d) show the code
with type-1/2/3 similarity, respectively, where the vulnerability
exists in all of them.

2.2 Assumption

Since a function (procedure) usually serves as a standalone module,
we compute the code similarity in the function level granularity, like
many existingworks [14, 21, 54].We assume the input binary code is
completely stripped, that is, no compilation or symbol information.
Also, we assume the code in this binary shares the same compilation
provenance, which often is the case for easy maintenance and
usability [7]. Last, we assume the input source code is compilable.

3 OVERVIEW

BugGraph calculates the source-binary code similarity in two steps:
source binary canonicalization and code similarity computation.
The architecture of BugGraph is shown in Figure 3. The inputs
are the unknown target binary to be investigated, and a source
function with the ground truth, e.g., vulnerability. The output is
the similarity score between every function from the binary code
to the input source function.

In the first step, BugGraph canonicalizes the input source code
and target binary code by converting the source code to a compar-
ing binary with the compilation provenance identified based on the
target binary code. Here the provenance is represented as a 4-tuple
(architecture , compiler f amily, compiler version,optimization level ),
as they are the major factors that account for the variance in the
binary. An example is (x86,дcc, 4.8.4,O2). In this work, we prepare
a binary database offline with various compilation provenances, as
compiling source code online would be slow. As a result, BugGraph
can quickly obtain the comparing binary with a specific compila-
tion provenance. It is possible that a particular provenance may not
exist in the database, but one can always compile the source code
as needed.

In contrast, prior works such as Gemini [54], Genius [21], and
bipartite graph matching (BGM) [21, 54] would compile the source
code with a predefined configuration and account for the impact of
the compiling process at the later stage. We will show in Section 4.4
that while every method performs reasonably well dealing with a
handful of provenances, BugGraph is much more robust, with only
3% drop in true positive rate (TPR), as the number of provenances
increases. In contrast, the three prior works experience a much
larger TPR drop of 18%-28%.

In the second step, BugGraph computes the similarity between
the target binary and the comparing binary code. To do so, we
first disassemble both binary codes to assembly codes and for each
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Figure 3: The architecture of BugGraph.

function in the binary, construct the attributed control flow graph
(ACFG), which is demonstrated to be an effective representation for
binary function [21, 54, 56]. Now the problem is transformed into
the graph similarity computation, more accurately, one to many
attributed graph comparison. In this work, we leverage a graph
neural network (GNN) to generate a representative embedding for
each attributed graph, taking advantage of the recent development
of machine learning techniques on graph data [32, 49, 53].

As the GNN model can not be directly used for learning the
similarity, we add the triplet loss to the output of the GNN model
so that the GNN model can be supervised to learn to generate rep-
resentative embeddings. The triplet loss takes a triplet, e.g., {a,b, c},
as the input and learns to rank the similarity so that the similarity
between the first two is higher than that between the first and third,
that is, sim(a,b) > sim(a, c ). Thanks to the ranking mechanism,
our triplet loss is able to generate a fine-grained similarity value
space, providing the desired coverage of less similar code, i.e., type-
2 and type-3. Specifically, as we will show in Section 5.4, BugGraph
outperforms the aforementioned works for both types, especially
for type-3, 81% vs. up to 71% true positive rate.

4 PROVENANCE GUIDED SOURCE BINARY

CANONICALIZATION

This section presents the first step in BugGraph, that consists
of provenance identification of the target binary, and comparing
binary generation.

4.1 Compilation Challenge

In a compilation toolchain, there are three main stages: compila-
tion (front end), optimization (middle end), and machine-dependent
code generation (back end) as shown in Figure 4. Given the source
code, the compilation stage builds its intermediate representation
(IR), where different compilers would apply different rules. The
optimization stage applies various techniques on the IR aiming at
improving the performance and code quality. The specified opti-
mization level mainly affects this stage, with minor impact from
the compiler. Note that the same optimization levels from different
compiler families are different. For example, the optimization level
O3 in gcc is different from the O3 in llvm. Lastly, the code gener-
ation stage further optimizes the code with architecture-specific
optimizations and converts the optimized IR to the machine code.
In short, the compiler, i.e., compiler family and version, affects all
the three stages, the optimization level affects the optimization

and code generation stage, and the architecture affects the code
generation stage.

To show the impact of compilation variance, we conduct an ex-
periment on a commonly used binary. That is, we compile OpenSSL
(version 1.0.1f) with various provenances and measure the differ-
ence in the control flow graph (CFG) to represent the code similarity.
To calculate graph difference, one could use existing methods such
as graph edit distance [5] and maximum common subgraph [25], all
of which are NP-complete problems and could take hours to days in
our tests to converge for two small graphs with only tens of nodes
and edges. For the scalability reason, we calculate graph difference
as defined in Equation 2, where |Vi |, |Ei | denote the vertex and edge
count for graph дi , and di f f (·) value is in the range [0, 1]. A higher
score shows the two graphs are more different from each other.

di f f (д1,д2) = 1 − min( |V1 |, |V2 |) +min( |E1 |, |E2 |)
max( |V1 |, |V2 |) +max( |E1 |, |E2 |)

(2)

In this experiment, we use the binary with the provenance
(x86,дcc , 4.8.4,O3) as the baseline, and compare with others with
a single change in the 4-tuple provenance, using arm, llvm-3.5, gcc-
4.6.4, and O0 for architecture, compiler family, compiler version,
and optimization level, respectively.

From Figure 5, one can see that the optimization level has the
largest effect, where 12% functions are completely different (differ-
ence score equals to 1) because the binary functions compiled from
the same source code do not exist in the other. Also, up to 32% of
all the functions have difference scores greater than 0.5, and 69% of
the functions are different (with a score greater than 0). Further, the
other three configurations bring additional challenges. There are
65%, 57%, and 35% functions that are different as a result of different
architecture, compiler family, and compiler version, respectively.

Syntax  analysis

Semantic  
analysis

Lexical  analysis

Front  end

IR Machine  
independent  
optimization

IR  analysis

Middle  end

Optimized  
IR  

Machine  
dependent  
optimization

Code  
generation

Back  end

int f(){
...

SRC
11101
00011

BIN

Machine  
code

Source  
code

Compiler  
(family,  version)

Optimization  
level

Architecture

Figure 4: A typical compilation process with the impacted stages of

each element from the 4-tuple compilation provenance.
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of OpenSSL with different compilation provenances.

4.2 Compilation Provenance Identification

Identifying the compilation provenance of a binary is possible as
the rules used during the compilation process will be reflected on
the binary code, such as instructions, instruction order, control flow
structure, and function dependencies [43, 44]. In this paper, we use
the standard file program in Unix-like operating systems to tell
the correct architecture of a binary and leverage a tool customized
from Origin [43] for the purpose of identifying the compiler family,
compiler version, and optimization level.

Below we will briefly introduce how Origin works. It extracts
the code features from the instruction and control flow graph. The
instruction features are called idioms, which are short sequences
of instructions with wildcards. A typical idiom feature is (push ebp
| * | mov esp, ebp), which represents a common stack frame set-
up operation with a wildcard in-between. On the other hand, the
control flow graph features are small, non-isomorphic subgraphs
of the control flow graph. Origin generates a large number of these
two features and extracts the top-k (in thousands) representative
features over the total (up to millions) with mutual information. In
the end, Origin trains a provenance identifier with the conditional
random field method.

4.3 Provenance Guided Binary Generation

Once we get the compilation provenance of the target binary code,
we can compile the source code to the binary format with the same
provenance. Thus, the two inputs are canonicalized to the same
format.

As we have discussed earlier, online compilation would incur
undesired overhead, thus we turn to offline compilation. That is,
for one open-source software, we will compile it with various con-
figurations, and extract the binaries to the database. Later, we can
easily get the desired comparing function as we keep the symbol
names during compilation. With offline compilation, one can easily
add new binaries to the database. Another advantage of offline
compilation is reliability because online compilation could fail due
to unpredicted reasons, such as missed dependency, incompatible
environment, or incorrect configuration.
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4.4 Benefit of Provenance Identification

We evaluate the benefit of using provenance guided source binary
canonicalization by comparing BugGraph and related works. In
this test, we use the same source code, i.e., type-1, but with differ-
ent compilation configurations in terms of compiler family, com-
piler version, and optimization level. Starting from one compiler
(gcc-4.6.4) and all of its optimization levels (O0-O3), we add other
compilers in the order of gcc-{4.8.4, 5.4.1} and llvm-{3.3, 3.5, 5.0}.
Both the training and testing use the same compilation configura-
tions. We report the average results of the 1, 000 source functions
from a syntax similar dataset (Dataset II, which will be discussed
in Section 7).

We compare BugGraph with two recent works, Gemini, Genius,
and a baselinemethod, bipartite graphmatching (BGM). For Gemini,
we use their open source code1. For Genius, we obtain the source
code on ACFG extraction and codebook generation from the au-
thors and implement other components ourselves. BGM measures
the similarity of two ACFGs with the Hungarian assignment algo-
rithm, where we reuse the implementation from Genius. The three
methods will compile the source code with a random provenance,
and we tune their parameters for the best performance.

From Figure 6, one can observe that BugGraph is able to scale
to more compilation configurations with consistent accuracy, while
others can not. Particularly, with four compilation configurations,
BugGraph, Gemini, Genius, and BGM achieve 96%, 95%, 91%, and
73% true positive rate (TPR), respectively, when we take the top-5
candidates as positives. With 24 compilation configurations, Bug-
Graph only drops 3% TPR, while Gemini, Genius, and BGM drop
18%, 22%, and 28%, respectively. The scalability of BugGraph is
benefited from the provenance guided canonicalization because we
always compare a target binary with the comparing binary function
sharing the (predicted) compilation provenance. Furthermore, it is
important to note that this result is consistent with the reported
numbers in both Gemini and Genius as they show good accuracy
with fewer compilation configurations in terms of compiler and
optimization level.

1https://github.com/xiaojunxu/dnn-binary-code-similarity



(b)  The  ACFG  for  the  binary  code  of  CVE-­
2015-­1792  under  (x86,  gcc,  4.8.4,  O0)
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Figure 7: The attributed control flow graph, (a) the defined at-

tributes, (b) an example ACFG.

5 CODE SIMILARITY COMPUTATION

This section computes code similarity. We first convert the binary
code to the attributed control flow graph and later compute the
similarity between them.

5.1 Binary Code to Attributed Graph

Existing works would first disassemble the binary code to assem-
bly code, in which the statement is combined by operation code
(opcode) and operand. Further, the control flow operations, e.g.,
branch statement, would split the assembly code into multiple basic
blocks, where either all the statements inside one basic block will
execute together, or none of them execute. Taken each basic block
as a node and the control flow relationship as an edge, one can get
the control flow graph (CFG). As CFG maintains the code structure,
it is an essential representation for code analysis [51, 55]. However,
only using the CFG without the specific assembly code ignores the
syntax features.

In this work, we employ the attributed control flow graph (ACFG)
by attributing each node as a syntax feature vector. The ACFG is
shown to be an efficient representation for binary code [21, 54,
56]. Particularly, the attributes are extracted from both the basic
block and CFG level, shown in Figure 7(a). There are six basic
block features, i.e., number of numeric constants, string constants,
transfer instructions, calls, instructions, and arithmetic instruction,
as well as two attributes calculated on the CFG, i.e., number of
children, and betweenness centrality, which measures the node
importance based on the passed shortest paths [11]. The ACFG for
CVE-2015-1792 in Figure 1 under (x86,дcc, 4.8.4,O0) is shown in
Figure 7(b).

5.2 Attributed Graph Embedding

Once ACFGs are constructed, the similarity of two binary codes is
transformed into the similarity of two attributed graphs. A good
algorithm of calculating graph similarity needs to be not only accu-
rate but also scalable. The latter is important due to the need for
computing a large number of pairs of attributed graphs. For exam-
ple, there are 6,441 functions in the OpenSSL binary (version 1.0.1f)
if compiled with (x86,дcc, 4.8.4,O0). If more than 100 vulnerable
functions were to be studied as in prior work [21, 54], this would
easily mean that one needs to compare millions of graph pairs for
only one binary. To address this problem, we leverage the recent
advances in graph neural network (GNN) to learn a representative
embedding for each attributed graph, which can then be used for
accurate similarity computation [32, 34, 49, 50, 53].
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Figure 8: The architecture of graph neural network.

In BugGraph, the architecture of the GNN model is shown in
Figure 8. There are three types of layers: the input layer, hidden
layers, and the output layer. In the GNN, the input layer takes an
attributed graph, in our case ACFG, where hv denotes the original
embedding for node v .

The most important layers of the GNN are the hidden layers that
iteratively update the embedding of a node by accumulating the
embeddings of its neighbors and itself from the previous iteration.
The common graph convolution method learns a function f (·)
to generate a node v’s embedding at the (i+1)-th layer with its
embeddings hiv and all of its neighbors’ embeddings N (v ) from
the i-th layer [32]. In general, hi+1v = f

(
hiv ,N (v )

)
. Thus, in the

example, the embedding of node 2 at the (i+1)-th layer hi+12 is
generated from hi1 and h

i
2.

In this work, we use an attention mechanism to capture the more
important nodes, assigning larger weights when generating the
embedding [49]. Formally, the attention-based function is defined
in Equation 3, where σ (·) is an activation function,W i

1 the trainable
weight matrix at i-th layer, and αuv the learned attention coefficient
for each edge.

hi+1v = σ *.
,
αvvh

i
v +

∑
u ∈N (v )

αvuW
i
1h

i
u
+/
-

(3)

After a total of l iterations, one accumulates all the node embed-
dings to produce the final embedding as ej =W2

∑
v ∈V hlv for the

j-th ACFG, whereW2 is another trainable weight matrix. Thus, the
graph embedding of the j-th ACFG, ej , equals to дnn(дj ), which rep-
resents the computation process of a GNN model. In the end, based
on the label from the downstream task, e.g., graph classification,
the model will compute the loss value for that task, e.g., softmax
function for classification [9], back propagate to the hidden layers,
and tune the trainable parameters.

In the following, we will use an example to illustrate the use of
the ACFG and graph embeddings. Figure 9 shows three functions
from SNNS and PostgreSQL from Dataset II (discussed in Section 7):
the functions or, less, and gistwritebuffer are compiled with
(x86, llvm, 3.3, O2), (x86, llvm, 5.0, O2), and (x86, llvm, 3.3, O2),
respectively. The first two functions share type-3 similarity and
the third one is a different function. In this example, the ACFGs on
the top row of Figure 9 are the inputs to the GNN, which in turn
produces the graph embeddings for each ACFG. The outputs of the
GNN are three graph embeddings, e.g., ea , ep , and en .
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Figure 9: Graph triplet-loss network architecture. Solid and dashed

arrows denote forward and backward propagation, respectively.

5.3 Graph Triplet-Loss Network for Similarity

Ranking

The goal of BugGraph is to accurately capture the subtle difference
among these ACFGs and functions. In this work, the similarity is
measured by the cosine similarity, which has been shown to be
effective for the embeddings in high dimensional space [54]. For
any two vectors, i.e., A⃗ and B⃗, it is formally defined as:

sim(A⃗, B⃗) =
A⃗ · B⃗

∥A⃗∥∥B⃗∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1 B

2
i

(4)

The similarity score is in the range [-1, 1], where the higher the
value is, the more similar the embeddings are. From Figure 9, one
can see that the generated embeddings of the first two functions, or
and less, show a high (0.95) cosine similarity score, while the first
and third functions, or and gistwritebuffer, show a low (0.45)
score.

The GNN model is not sufficient by itself to model the similarity,
as it needs a proper loss function to supervise the learning process.
In the context of code similarity computation, the loss function
should address the following two challenges. First, it should be
able to generate loss values based on the similarity, that is, the loss
value should be small if two similar codes have similar embedding.
Second, the various code similarity types require the learned model
to be able to detect the subtle difference in codes. In other words,
the model should be able to learn that type-1 is more similar than
type-2 and type-3, type-2 more similar than type-3, and type-3 more
similar than completely different code. Therefore, the similarity
ranking can be represented as type-1 > type-2 > type-3 > different.

To address both challenges, BugGraph builds a graph triplet-loss
network (GTN) which relies on the triplet loss [46] to supervise the
learning of the GNN model. Figure 9 shows the workflow of the
GTN model. The input to our GTN is a triplet of ACFGs (binary
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Figure 10: Benefits of triplet loss. (a) shows the TPR against type-2

similar code, (b) shows the TPR against type-3 similar code.

functions), which consists of the anchor graph (дa ), positive graph
(дp ), and negative graph (дn ), i.e., {дa ,дp ,дn }. The idea is to compute
the ranking of similarity where дa and дp are more similar than дa
and дn .

At the core of graph triplet-loss network is the triplet loss com-
putation for the similarity of two pairs, that is, the positive pair
{ea , ep } and negative pair {ea , en }. Formally, the loss value Li for
the i-th triplet is defined as

Li = max{sim(eia , e
i
n ) − sim(eia , e

i
p ) + ∆, 0} (5)

which is greater than or equal to 0. Here ∆ denotes the margin
to enhance the distance between positive and negative pairs so
that the model can put the similar pair closer and the different pair
further in the high dimensional space. For the example in Figure 9,
the loss value would be max{∆ − 0.5, 0}. The margin value ∆ plays
an important role on the accuracy of similarity computation. A
larger margin can better stretch the distance between positive and
negative samples but requires more training time to reach a smaller
loss value, while a smaller margin can reduce the training time at
the loss of accuracy (will be evaluated in Section 7.5).

As the loss value is back propagated to the GNN model, one
can use an optimizer, e.g., gradient optimization, to tune the train-
able parameters in order to minimize the loss value. Formally, for
the training triplet set T , we will tune the GNN model based on
Equation 6.

min
W 1

1 , ...,W
l
1 ,W2,α

|T |∑
i
Li (6)

As a result, the GNN model can be supervised to generate repre-
sentative embeddings for the purpose of similarity ranking. To this
end, our GTN model is end-to-end trainable.

It is important to note that the triplet loss also introduces an-
other benefit that the similarity relationship can be transitive. That
is, if the triplets {a,b, c} and {a, c,d} exist, that means sim(a,b) >
sim(a, c ) and sim(a, c ) > sim(a,d ), then sim(a,b) > sim(a,d ),
which means the triplet {a,b,d} inherently exists. Exploiting the
transitivity among a large set of triplets, we can learn a more accu-
rate model to map a broader similarity space, which enables highly
similar code to be ranked higher at the inference stage.

5.4 Benefit of Triplet Loss

To evaluate the benefits of triplet loss towards covering the syntax
similar code, we conduct an experiment for testing the syntax simi-
larity types, i.e., type-2 and type-3. In particular, we use the binaries
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Figure 11: Node embedding similarity to its graph embedding (im-

portant nodes are colored).

from a syntax similar dataset (Dataset II, discussed in Section 7).
We make sure the code is compiled under the same compilation
configuration, i.e., (x86,дcc, 4.6.4,O2) in this experiment. Later, we
use 2, 000 type-2 and type-3 source functions (1, 000 for each) to
search the target binaries.

The accuracies of type-2 and type-3 code similarity types are
shown in Figure 10. One can see that BugGraph outperforms the
compared works for both similarity types when measuring top-1
and top-5 TPR. For the difficult type-3 similar code, BugGraph
achieves 81% of top-5 TPR compared to 71% for Gemini and 66%
for Genius. For type-2, BugGraph also achieves the best accuracy.
Specifically, for the top-5 TPR, BugGraph achieves 96%, and Gemini
gets 92%, both outperform Genius by a large margin.

5.5 Understanding Similarity Ranking

In this section, we will use two examples to explain our graph mod-
els. In the first example in Figure 11, we show the node importance
for the ACFGs in Figure 9. The node importance is represented by
the similarity between the node embedding and the graph embed-
ding, which is also used in prior work on GNN explanation [57].
As the embeddings for both graph and node are high dimensional
which are difficult to visualize and interpret, we choose to present
the cosine similarity of each node embedding to the graph em-
bedding. In Figure 11, we highlight the top-4 similar nodes in the
functions. Clearly, for the first two functions, the starting node, end-
ing node, and two middle nodes have high similarity. In contrast,
a number of nodes in the third function share the equal similarity
and the ending node is negative. In summary, the learned graph
embeddings are able to capture the essential nodes, attributes, and
topological structure of ACFGs.

In the second example, we use five vulnerable functions from
OpenSSL binaries. Particularly, the function EVP_EncodeUpdate
has type-2 similar code, ssl3_get_cert_verify and ASN1_item
_ex_d2i have type-3 similar code, and the rest two have type-1 sim-
ilar code. For each function, we get multiple ACFGs under different
compilation configurations. For this demonstration, because we in-
tend to show the effectiveness of our triplet loss-based graph neural
network, we do not use provenance identification. Given the embed-
ding generated by our GTN for each binaryACFG, t-SNE [48] is used
to visualize the high-dimension embeddings into two-dimensional

1 ssl3_get_cert_verify
2 EVP_EncodeUpdate
3 ASN1_item_ex_d2i
4 BN_hex2bn
5 do_free_upto

Type-­2

Type-­3

Type-­1

Type-­1
Type-­3

Figure 12: Visualization of ACFG embeddings generated from Bug-

Graph using t-SNE. Each number represents a function, and each

point represents a specifically compiled binary of that function.

space as shown in Figure 12. One can see that with the help of
GTN, BugGraph is able to put the similar ACFGs closer no matter
they are sharing type-2 or type-3 code similarity or compiled with
different provenances. Note that there has been a lot of interest in
explainable machine learning techniques [16, 23, 35, 47, 57], which
we plan to explore as part of future work.

6 IMPLEMENTATION

ACFG construction is implemented with a commercial off-the-
shelf disassembly tool, IDA-Pro [1]. We start by building the control
flow graph (CFG) and traverse each basic block to get the six basic
block features. As for the CFG features, we count the number of chil-
dren for each node and run the betweenness centrality algorithm
on the CFG.

GTN is implemented on top of TensorFlow (version 1.3.0). We
use the graph attention network as our GNN [49]. We set the inter-
mediate and final embedding size to be 512, the number of epochs
100, the number of iterations 5, the margin value ∆ 0.5, and the
batch size 10.

Triplet generation. The triplets are generated in the following
way. First, for each type-2 and type-3 similar function, we create
two triplets {д1,д2,дr1} and {д1,д3,дr2}, where д1 and д2 are type-2
similar to each other, д1 and д3 are type-3 similar, дr1 and дr2 are
two randomly selected different functions. Second, for each binary
function дi , we randomly select one д′i from its other compilation
provenances and a different one дr to generate a triplet {дi ,д′i ,дr }.
This is to ensure that ourmodel can handle the compilation variance,
even when a wrong provenance was identified (18% of the time in
our tests). Note that we can split a triplet to obtain the pairs for
comparison with related works. For example, {д1,д2,дr1} can be
divided into {д1,д2} (of similar) and {д1,дr1} (of different).

For a new target binary, BugGraph creates the triplets in the
format {д1, b1, b2}, where д1 denotes the known comparing function
(e.g., vulnerability), and bi denotes the i-th function in the target
binary. For every comparing function, we will create (n + 1)/2
triplets, where n denotes the number of functions in the target
binary.



Table 1: Specifications of syntax similar dataset (Dataset II).

Software # of # of # of # of
Type-2 Type-3 binaries functions

Train SNNS-4.2, 152 524 600 493,841PostgreSQL-7.2

Test Binutils-{2.25, 2.30}, 1,436 3,811 5,568 2,648,627Coreutils-{8.21, 8.29}
Total - 1,588 4,335 6,168 3,142,468

7 EXPERIMENT

This section evaluates BugGraph and compared works. We verify
our experiment setting with a validation test, compare recent works
on source-binary code similarity detection, and apply BugGraph
to detect vulnerabilities on firmware. Later, we study the sensitivity
of parameters and analyze the runtime.

7.1 Experimental Setting

We run the experiments on a server with two Intel Xeon E5-2683
v3 (2.00 GHz) CPUs, each of which has 14 cores and 28 threads,
512 GB of memory, and a Tesla K40c GPU. As we have discussed in
Section 4.4, we compare BugGraph against Gemini, Genius, and
bipartite graph matching (BGM).

Evaluationmetrics.We evaluate BugGraph and related works
with the following metrics, i.e., true positive rate (TPR), false posi-
tive rate (FPR), true negative rate (TNR), false negative rate (FNR),
and accuracy. Given a binary and a query function, there should
bem matchings among a total of n functions. Assume the top-k
extracted similar functions are positives, if there are p correctly
matched functions, TPR = p

m , FPR = k−p
n−m , TNR = 1− FPR, and FNR

= 1− TPR. The accuracy is defined as the sum of true positives and
true negatives over all. We also use the receiver operating charac-
teristic (ROC) curve to show the change of TPR against FPR, and
the area under a ROC curve (AUC) to illustrate the effectiveness of
a model, where the closer to 1 the better.

The four datasets used in our experiments consist of:
Dataset I: Validation dataset

2 is a dataset used in Gemini [54]
(also referred to as Dataset I), which is used to validate our results
and ensure a fair comparison against related projects. This dataset
extracts the ACFGs from the binaries of OpenSSL (version 1.0.1f
and 1.0.1u) with compiler gcc-5.4, optimization level O0-O3, and
architecture x86, ARM, and MIPS. In total, there are 129, 365 ACFGs
from 7, 305 different functions.

Dataset II: Syntax similar dataset, including a publicly avail-
able source code similarity dataset from SNNS-4.2 and PostgreSQL-
7.2 with 152 and 524 pairs of type-2 and type-3 code from prior
work [8, 39], as well as our manually labeled dataset from Binutils-
{2.25, 2.30} and Coreutils-{8.21, 8.29} with 1, 436 and 3, 811 pairs
of type-2 and type-3 code. All the software is compiled with six
different compilers, i.e., gcc-{4.6.4, 4.8.4, 5.4.1} and llvm-{3.3, 3.5, 5.0},
and four optimization levels (O0-O3) under the same architecture
(x86). There are 24 compilation provenances for each binary. In
total, there are 6, 168 binaries and 3, 142, 468 functions.

2https://github.com/xiaojunxu/dnn-binary-code-similarity/blob/master/data.zip

Table 2: Specifications of the validation dataset (Dataset I).

Train Validate Test Total
# of ACFGs 103,732 12,726 12,907 129,365
# of unique functions 5,844 730 731 7,305

It is important to note that different binaries from the same
software may share the same functions, which can lead to biased
testing results if the dataset were divided in the binary level for
training and testing [6]. We avoid this issue by splitting in the
software level as shown in Table 1. Particularly, the training dataset
includes the binaries from SNNS-4.2 and PostgreSQL-7.2 dataset,
while the testing dataset includes the binaries from Binutils-{2.25,
2.30} and Coreutils-{8.21, 8.29}. This way, there is no overlapping
between the two datasets, which is able to provide reliable results
and demonstrate the generalizability of the learned model.

Dataset III: ARM binary dataset includes the binaries for
ARM architecture from SNNS-4.2, PostgreSQL-7.2, and OpenSSL.
For OpenSSL, we get the source code of three versions (0.9.7f, 1.0.1f,
and 1.0.1n). We cross compile them using four compilers gcc-{4.6.4,
4.8.4} and llvm-{3.3, 3.5} with four optimization levels, i.e., O0-O3.
In the end, this dataset consists of 544 binaries.

Dataset IV: Firmware image dataset consists of six firmware
images from TP-Link routers (model ArcherC9, AD7200, TouchP5,
ArcherC2600, ArcherC5200, and ArcherC5400).

7.2 Validation Test

The Dataset I considers the binary functions compiled from the
same source code as similar, a.k.a., type-1, and the ones from differ-
ent source code as different. This dataset does not include type-2
or type-3. As in the experiment of Gemini, the whole dataset is
divided into training, validation, and testing with ratio [0.8, 0.1, 0.1].
No two binary functions compiled from the same source code are
assigned to the same group. The specifications of the dataset are
shown in Table 2.

Gemini generates two pairs for each binary function as follows.
Given a binary function д1, a binary function д′1 compiled from the
same source code with a different provenance is randomly selected
as similar, and another binary function д2 compiled from a different
source code is randomly selected as different. That is, {д1,д′1} is
similar, {д1,д2} is different.
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Figure 15: ROC of detecting source binary code similarity for (a) type-1, (b) type-2, and (c) type-3.

BugGraph generates the triplets by merging the two pairs from
the same binary function. For example, for the two pairs, {д1,д′1}
and {д1,д2}, we generate one triplet, {д1,д′1,д2}. As the binaries are
not shared in this dataset, we cannot directly apply our provenance
identification. In this case, we provide three varieties of BugGraph,
i.e., without provenance, the average reported accuracy (82%) of
provenance identification, and with an oracle (100% accuracy).

Figure 13 illustrates the ROC curves of different methods on
the same testing dataset. We make three observations here. (1)
We are able to reproduce the results of previous works (e.g., refer
to Figure 5 in [54] for the ROC curves of Gemini, Genius, and
BGM). (2) For type-1 code similarity detection, BugGraph without
provenance is as good as Gemini, and they are significantly better
than other works. Particularly, BugGraph without provenance
achieves 0.973 AUC value, which is close to Gemini’s 0.97. Both
are higher than Genius’ 0.936 and BGM’s 0.905. It is interesting
to point out that graph embedding methods (BugGraph, Gemini,
and Genius) are all effective for binary code similarity detection.
(3) With provenance identification, BugGraph is able to further
improve the performance of type-1 code similarity detection. With
the average accuracy (82%), BugGraph is able to achieve 0.991 AUC
value. Further, BugGraph with the 100% correct provenance is able
to achieve 0.996 AUC value. This clearly shows the importance of
identifying compilation provenance for code similarity detection.

7.3 Accuracy of Source-Binary Code Similarity

Detection

This experiment evaluates the accuracy of BugGraph and com-
pared works on detecting source-binary code similarity. We use
the syntax similar dataset (Dataset II), where the source functions
are from Binutils-2.25 and Coreutils-8.21, and the target binaries
are from Binutils-2.30 and Coreutils-8.29. The target binaries are
compiled with 24 compilation provenances varying from the com-
piler (family and version) and optimization level. We randomly
select 1, 000 type-1, type-2, and type-3 (3, 000 in total) as the source
functions. For each source function, we search all the binaries in
the target dataset and report the average on each binary of all the
queries. All the compared works are evaluated in the same setting.

BugGraph leverages the provenance identification to canonical-
ize the source and binary code, where it identifies the compilation
provenance with an overall accuracy 82% in this experiment. Specif-
ically, the provenance identifier achieves 100%, 100%, 96%, and 84%
accuracy for architecture, compiler family, compiler version, and
optimization level, respectively.

BugGraph compiles the source function to the comparing binary
with the predicted provenance. In contrast, other projects use a
binary with random provenance. The evaluation results against
different top-k values are shown in Figure 14. One can see that,
BugGraph is able to outperform the recent works with a large
margin under different top-k values, especially for the smaller k
values. Taking top-5 TPR as an example, for the identical type-1



Table 3: Discovered vulnerabilities from six recent firmware.

CVE # Appear Vulnerability type CVE # Appear Vulnerability type CVE # Appear Vulnerability type

2016-6303 5 Out-of-bounds write 2016-0702 5 Side-channel attack 2015-0206 4 Allow DoS attack
2016-6302 5 Remote DoS attack 2016-0701 2 Miss required crypto 2015-0205 4 Allow remote access
2016-2842 5 Out-of-bounds write 2015-3197 3 Man-in-the-middle 2015-0204 4 Downgrade attack
2016-2182 5 Out-of-bounds write 2015-1794 2 Segmentation fault 2014-8176 4 DoS overflow
2016-2180 5 Out-of-bounds read 2015-1792 4 Allow DoS attack 2014-5139 3 Null pointer derefer
2016-2178 5 Side-channel attack 2015-1791 4 Double free 2014-3572 4 Downgrade attack
2016-2176 2 Buffer over-read 2015-1790 4 Null pointer derefer 2014-3567 4 Remote DoS attack
2016-2109 2 Allow DoS attack 2015-1789 4 Out-of-bounds read 2014-3511 1 Man-in-the-middle
2016-2105 2 Memory corruption 2015-1788 4 Allow DoS attack 2014-3508 1 Information leakage
2016-0799 5 Out-of-bounds read 2015-0292 4 Integer underflow 2014-3470 1 Null pointer derefer
2016-0797 3 Integer overflow 2015-0288 4 Null pointer derefer 2014-0221 1 Remote DoS attack
2016-0705 5 Double free 2015-0287 4 Invalid write 2014-0198 1 Null pointer derefer
2016-0704 4 Information leakage 2015-0286 4 Invalid read 2014-0195 1 Buffer overflow
2016-0703 1 Man-in-the-middle 2015-0209 4 Use-after-free 2013-6449 1 Daemon crash

code, BugGraph is able to achieve 93% TPR, which is at least 16%
better than others. In this case, Gemini, Genius, and BGM obtain
77%, 69%, and 45%, respectively. Again, this shows the importance of
our provenance identification as the only compiler induced variance
exists in type-1 similar code.

For the syntax identical type-2 code, BugGraph achieves 90%
TPR, while Gemini, Genius, and BGM obtain 74%, 54%, and 40%,
respectively. For the most difficult syntax similar type-3 code, Bug-
Graph is able to get 75% TPR, which is 24%-44% higher than others.
In particular, Gemini, Genius, and BGM get 51%, 41%, and 31%,
respectively. One can get similar observations from top-1 TPR.

We present the ROC in Figure 15 to show the change of TPR
against FPR, where (a) (b) (c) present type-1, 2, 3 similar code. One
can see that BugGraph achieves better AUC values than compared
works for all three code similarity types, especially for type-2 and
type-3 code. Specifically, BugGraph achieves 0.998, 0.994, and 0.965
AUC values for type-1, 2, 3 similar code, respectively, while Gemini
achieves 0.985, 0.943, and 0.919.

Table 4: The false positive rate (FPR) in percentage (%) against differ-

ent top-k values for source-binary code similarity detection (with

the lowest FPR value highlighted).

Method Top-1 Top-5 Top-10 Top-15 Top-20
BGM 0.07 0.46 0.95 1.45 1.94

Type-1 Genius 0.05 0.43 0.93 1.42 1.92
Gemini 0.03 0.42 0.92 1.42 1.91
BugGraph 0.01 0.41 0.9 1.4 1.9

BGM 0.08 0.51 1.06 1.61 2.16
Type-2 Genius 0.07 0.5 1.04 1.59 2.15

Gemini 0.05 0.47 1.02 1.58 2.13
BugGraph 0.02 0.46 1.01 1.56 2.12

BGM 0.1 0.55 1.13 1.71 2.29
Type-3 Genius 0.09 0.54 1.12 1.7 2.28

Gemini 0.08 0.53 1.1 1.69 2.27
BugGraph 0.05 0.5 1.08 1.67 2.26

Further, we study the false positive rate (FPR) of BugGraph and
compared works as shown in Table 4. Although all the works show
close FPR values for different top-k , BugGraph gets the lowest
under different settings. They are consistent for different types of
similar code. In addition, the FPR values for all the methods are
small. When k is smaller than 20, all the methods get less than 3%
FPR for all the three types of similar code. The small values are due
to the high true negative (TN) as there are up to several thousands
of different functions (true negatives) inside a binary.

7.4 Firmware Vulnerability Detection

In this test, we apply BugGraph to identify vulnerabilities from
the real-world firmware, which is known to have numerous bina-
ries [12, 24, 33]. To achieve that, we extend BugGraph to support
the commonly used architecture of firmware, i.e., ARM. Particu-
larly, we retrain BugGraph with the binaries under ARM architec-
ture (Dataset III). Here we build a vulnerability database with 218
known vulnerable functions, where 126 of them are obtained from
Genius [21], as well as 92 additional vulnerable functions are man-
ually collected by ourselves. The vulnerabilities are from several
versions of three open source projects, i.e., OpenSSL, Binutils, and
Coreutils, and compiled to various provenances offline.

For each binary in the firmware image dataset (Dataset IV),
BugGraph predicts its compilation provenance, builds the ACFGs
for all the functions inside, and computes their similarities to the
vulnerable functions in our database. For the compilation prove-
nance, the binaries fromArcherC9, AD7200, TouchP5, ArcherC2600,
ArcherC5200, ArcherC5400 are mostly predicted as gcc-4.6.4-O0,
gcc-4.6.4-O2, gcc-4.6.4-O0, gcc-4.6.4-O2, gcc-4.8.4-O0, and gcc-4.8.4-
O0, respectively. We search each firmware image for the 218 vulner-
able functions. For each image, we get top-10 candidates for each
vulnerable function, filtering out the candidates with the similar-
ity score of less than 0.9. The remaining candidates are manually
investigated and we are able to identify 140 OpenSSL vulnerable
functions from 42 unique CVEs. The existence of these vulnerable
functions is further confirmed by checking the binary versions
in the image. The found CVEs and their appearances (number of
firmware images that have such CVEs) are summarized in Table 3.



It is important to note that some severe vulnerabilities have
not been patched. For example, the CVE-2016-2842, which allows
the attacker to cause denial-of-service with the highest severity
score 10 [2], appears in five of the investigated firmware except for
TouchP5. Also, some old vulnerabilities, e.g., CVE-2013-6449, still
exist in the current firmware.

7.5 Parameter Sensitivity Study

In this test, we use the 600 binaries from SNNS-4.2 and PostgreSQL-
7.2 (Dataset II), which has 493, 841 functions. We split this dataset
by selecting 80% functions for training, 10% for validation, and the
remaining 10% for testing. We guarantee that no two binary ACFGs
compiled from the same source code exist in the same group. We
use the default parameter values as discussed in Section 6 and test
the validation dataset every 5 epochs. In the following, we will tune
one parameter at a time and keep the others as default.

Thenumber of epochs shows the convergence rate of the learn-
ing process. We use the average loss value on the validation dataset
to study the impact of different epochs as shown in Figure 16(a).
We test 200 epochs and show the results for both BugGraph and
Gemini. One can see that, at around 50 epochs, both models start
to converge. After 80 epochs, both are reaching a relatively stable
status.

Embedding size represents the size of the intermediate node
embedding and the final graph embedding. We test various embed-
ding sizes starting from 16 to 512. The larger the embedding size,
the stronger the model’s learning ability, while the computation
cost will increase accordingly. Figure 16(b) presents the AUC values
on the validation dataset of various embedding sizes. The smaller
embeddings (16, 32) take a longer time to converge and get a low
AUC value even at epoch 100. The larger embeddings (256, 512) are
able to converge with fewer epochs and achieve better accuracy.
One can see the default size of 512 gets the best AUC value for most
epochs.

The number of iterations in generating graph embedding also
affects the convergence, learning ability, and computation cost. We
study various iterations starting from 2 to 8 as shown in Figure 16(c).
With 2 and 3 iterations, the AUC values are rather low compared
with the other settings. The models with a larger number of itera-
tions (7, 8) converge quickly but the AUC values are close with the
iteration numbers 4, 5, 6. Thus, we select 5 as the default iteration
number.

Margin value ∆ denotes the distance between the positive and
negative pairs in the triplet loss. Figure 16(d) shows that the larger
margin (0.7, 0.8) requires more time to converge because they are
tuning the learned parameters more frequently than others. The
small ones (0.2, 0.3) produce smaller AUC values. As a result, the
default margin value is set to 0.5.

7.6 Runtime Analysis

In this subsection, we report the runtime of BugGraph in terms
of training and inference. We omit the binary disassembly time as
all the methods share the same process which is done by the third-
party tools. The training is an offline process which only needs to
be done once. During training, the triplet loss-based GNN costs 485
seconds per epoch, comparing to 450 seconds per epoch for Gemini.
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The longer time comes from our GNN which needs to learn the
attention coefficient on each edge, taking more time than the graph
embedding method used in Gemini. The training for the provenance
identifier takes 130 seconds per epoch. In total, the training time
of BugGraph is similar to Gemini, which is up to 300× faster than
Genius because the latter needs to compute the graph similarity of
any two graphs in the codebook. For the time-consuming graph
algorithms, we plan to accelerate them with the recent advances
on accelerating the computation of graph algorithms on shared-
memory, distributed systems, and GPUs [27–29].

During inference, BugGraph again has a similar runtime in
disassembly and ACFG construction as Gemini, adding a small
overhead (5%) from the provenance identification. The code similar-
ity computation is relatively close, with about 2% overhead brought
by attention computation.

8 RELATEDWORK

Binary features-based approaches. The early works of binary
code similarity detection mainly use the instruction features, e.g.,
n-gram [40] and n-perms [30]. Beyond instruction features, Zynam-
ics BinDiff [19] and BinSlayer [10] are two representative works of
using structure features. Recent research has used both instruction
and structural features. For example, Rendezvous [31] decomposes
the CFG into subgraphs and uses size-k subgraphs as graph fea-
ture, coupled with instruction features represented as n-grams and
n-perms on instruction mnemonics. David et al. [13] decompose
the original CFG into tracelet, which is a continuous, short, partial
trace of execution. The code similarity is measured as the similarity
of tracelet. TEDEM [42] captures the instruction features using the
expression tree for a basic block and computes code similarity with
tree edit distance. BinHunt [22] uses symbolic execution and a the-
orem prover to check all possible pairs of equations between basic
blocks. iBinHunt [37] extends the comparison to inter-procedural
CFGs and further prunes the candidates. Pewny et al. extend code



similarity detection to cross architecture binaries[41], which uses
I/O patterns as instruction features, represents each function as
CFG, and computes the similarity of two CFGs with graph isomor-
phism.

Machine learning-based approaches. DiscovRe [20] extracts
nine statistic features to represent each basic block. It firstly filters
out the obviously different functions with a machine learning al-
gorithm, i.e., k nearest neighbor. Later, it computes code similarity
with maximum common subgraph matching on CFGs. On the other
hand, Asm2Vec [14] decomposes the CFG of a function intomultiple
sequences and generates a numeric vector for each function based
on the PV-DM model. The function similarity will be calculated
as the corresponding vector similarity. Similarly, INNEREYE [60]
decomposes the CFG into a number of sequences, and leverages
Word2vec to generate instruction embedding and the long short
term memory model to generate sequence embedding.

Graph embeddingmethods use various graph-based machine
learning techniques. The early work Genius [21] combines the
syntax features and CFGs into an attributed CFG, and calculates
the function similarity with graph edit distance. In addition, Genius
uses a “bag-of-words” idea to create the high-level embedding for
each graph. To provide fast query scalability, Genius uses semantic
hashing on high-level embeddings to fast get the candidates. To
further improve the performance, Gemini designs the first work of
using graph neural network (GNN) [54] where the Siamese Network
is used to compute function similarity. DeepBinDiff [18] designs an
unsupervised deep neural network based method, which applies
the Word2vec model to extract semantic information for tokens
and thus generates basic block feature vector. Later, it uses random
walk-based unsupervised graph embedding method to learn basic
block embedding from the inter-procedural CFG. In the end, they
are able to differentiate two binaries from basic block level.

Comparison. BugGraph is different from prior works in three
aspects. First, this work is motivated by a real use case of binary
code similarity detection, where the source code of the comparing
binary is usually available. As a result, BugGraph focuses on the
problem of source-binary code similarity detection. As it is challeng-
ing to capture consistent features between source and binary code,
we devise a new canonicalization method with provenance identi-
fication. Second, for the comparing source code, the prior works
usually compile it to a binary code with random configuration. In-
stead, BugGraph would identify the compilation provenance of the
target binary code and then compile the source code to the same
provenance. This would greatly ease the following code similar-
ity detection task. Third, compared to prior works that are mostly
focusing on the type-1 similar code, we introduce ranking based
triplet loss to supervise the learned model. Thanks to the ranking
mechanism, the model is able to stretch the similarity space, which
is thus able to cover the less similar code (type-2/3).

9 DISCUSSION

Currently, BugGraph is designed for binary code that is not ob-
fuscated or maliciously modified. The recent advances on binary
deobfuscation have achieved high accuracy [15, 52], which we hope
to utilize in the future development of BugGraph. Meanwhile, it is
possible to maliciously modify the binary to fool the file software,

which we used to identify the architecture. We would like to explore
more robust architecture identification techniques in the future.

The offline compilation needs to prepare a variant with every
known compilation provenance for the source code. It is possible
that the source code and its dependent libraries may not be compil-
able under some compilation configurations. For such cases, we will
find a secondary candidate in the order of architecture, compiler
version, compilation family, and optimization level. Nevertheless, it
is worth noting that even with partial provenance information, say
compiler family or optimization level, the code similarity compari-
son accuracy can still be improved as we have shown previously.

While BugGraph is designed for source-binary code similarity
detection, our graph triple-loss based network can also be used
for the traditional binary-binary code similarity detection when
the source code is unavailable or uncompilable, which has been
demonstrated in Section 7.2.

10 CONCLUSION

In this work, we have designed BugGraph, a new system that
identifies source-binary code similarity. BugGraph achieves that
with two steps. First, we identify the compilation provenance of the
binary code and compile the comparing source code with the same
provenance. Second, we utilize a ranking-based graph triplet-loss
network to cover the less similar code. The experiments on four
datasets show that BugGraph can significantly improve the perfor-
mance. Further, we use BugGraph to identify 140 vulnerabilities
in six commercial firmware.
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