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Abstract. Identifying the compilation provenance of a binary code helps
to pinpoint the specific compilation tools and configurations that were
used to produce the executable. Unfortunately, existing techniques are
not able to accurately differentiate among closely related executables,
especially those generated with minor different compiling configurations.
To address this problem, we have designed a new provenance identifica-
tion system, Vestige. We build a new representation of the binary code,
i.e., attributed function call graph (AFCG), that covers three types of
features: idiom features at the instruction level, graphlet features at the
function level, and function call graph at the binary level. Vestige ap-
plies a graph neural network model on the AFCG and generates represen-
tative embeddings for provenance identification. The experiment shows
that Vestige achieves 96% accuracy on the publicly available datasets
of more than 6,000 binaries, which is significantly better than previous
works. When applied for binary code vulnerability detection, Vestige
can help to improve the top-1 hit rate of three recent code vulnerability
detection methods by up to 27%.

Keywords: Compilation provenance, Code similarity, Vulnerability, Binary code,
Graph neural network

1 Introduction

A binary code is generated from source code through the compilation process.
The source code can be compiled to completely different binary codes, when
different compilers, coupled with different configuration settings, are used. The
process of identifying the compiler and configuration is referred to as the com-
pilation provenance identification [35]. Knowing the compilation provenance is
very helpful for binary code analysis, especially for malware analysis [41, 21, 16],
code vulnerability detection [14, 40, 17], and code authorship identification [30,
29]. In this context, compilation provenance identification aims to find out the
used compiler family, compiler version, and optimization level. Note that in this
paper we do not take into account the computer architecture for which the code
is compiled, because it can be accurately identified by existing tools, e.g., the
file software.



(a) Source code of an example with 
integer overflow. It happens when the 

sum of a and b is greater than the 
maximum integer value. 
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#include <stdio.h>

int sum(int a, int b) {
return a + b;

}

int main() {
int a, b;
scanf(“%d%d”, &a, &b);
int c = sum(a, b);
printf(“c = %d\n”, c);
return 0;

}

sumscanf printf

main

scanf printf

main sum

(b) The assembly code and function call graph under GCC-4.8.4-O0
(c) The assembly code and function 

call graph under GCC-4.8.4-O2

<sum>:
push ebp
mov ebp, esp
mov eax, dword ptr [ebp+0Ch]
mov edx, dword ptr [ebp+8]
add eax, edx
pop ebp
ret

<main>:
push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
lea eax, [esp+18h]
mov [esp+8], eax
lea eax, [esp+14h]
mov [esp+4], eax
mov dword ptr [esp], offset aDD
call ___isoc99_scanf
mov edx, [esp+18h]
mov eax, [esp+14h]
mov [esp+4], edx
mov [esp], eax
call sum
mov [esp+1Ch], eax
mov eax, [esp+1Ch]
mov [esp+4], eax
mov dword ptr [esp], offset format
call _printf
mov eax, 0
leave
ret
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<sum>:
mov eax, dword ptr [esp+4]
add eax, dword ptr [esp+8]
ret

<main>:
push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
lea eax, [esp+1Ch]
mov [esp+8], eax
lea eax, [esp+18h]
mov [esp+4], eax
mov dword ptr [esp], offset aDD
call ___isoc99_scanf
mov eax, [esp+1Ch]
add eax, [esp+18h]
mov dword ptr [esp+4], offset aCD
mov dword ptr [esp], 1
mov [esp+8], eax
call ___printf_chk
xor eax, eax
leave
ret
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Fig. 1: Code example. (a) shows an example source code with integer overflow, (b) (c)
show the assembly code and function call graph by compiling the source code with
compiler GCC-4.8.4 but different optimization levels O0 vs. O2.

Prior works transform this problem to a machine learning-based classification
problem [35, 36]. That is, they regard the compilation provenance as the label,
extract features from the binary code, and leverage machine learning methods,
e.g., conditional random field, to predict (classify) the provenance. The key com-
ponent in this design is the feature, as one needs to mine the useful features that
are able to show the difference between various compilation provenance. Two
types of features have been used in prior works, that is, the normalized instruc-
tion patterns, and the control flow graph [35, 36].

1.1 Motivation

However, we observe that these features focus only on the instruction and func-
tion levels, and as a result, are unable to differentiate closely related provenances.
For the example source code with integer overflow (happens when the sum of a
and b exceeds the maximum value of int) shown in Figure 1(a), one may compile
with the same compiler but with different optimization levels (O0 vs. O2). The
assembly codes (disassembled with IDA-Pro [4]) are presented in Figure 1(b)
and (c), respectively. For the control flow graph (CFG) features, as there are
no branch instructions in both sum and main functions, their CFGs remain the
same (one node) in both cases. Similarly, for the instruction features, after nor-
malization, e.g., unifying the register and memory address, the patterns will be
the same with the minor difference in the occurred frequency. As a result, using
the aforementioned features alone will unlikely to produce the correct provenance
for these two binary codes.
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In this paper, we have observed that a new feature, i.e., the function call
graph at the binary code level, can be used to significantly improve the accuracy
of provenance identification, especially for those binary codes generated with
different optimization levels. As we will show in §2, the optimization level has
the largest impact in binary code similarity detection, compared with compiler
family and version. Figure 1 also shows the function call graphs of the binaries.
With optimization level O0, the main function calls three functions, i.e., the
sum function and two library functions (scanf and printf ). In contrast, with
optimization level O2, the main function only calls the two library functions as
the sum function is inlined shown in lines 17 and 18 in Figure 1(c). Clearly, the
function call graphs will be able to help differentiate these two cases.

1.2 Contribution

To take advantage of this observation, we have designed a new code provenance
identification method, Vestige. Given a binary, Vestige transforms it to a
new representation, i.e., attributed function call graph, that covers code features
from three levels, instruction, function, and binary. Later, Vestige applies an
attention-based graph neural network to generate a representative embedding to
predict the compilation provenance.

In summary, we make the following contributions.

– New representation and method. We design a new representation for bi-
nary code, i.e., attributed function call graph (AFCG). The AFCG takes the
function call graph from the binary level as the graph structure. Later, we
attribute each node in the AFCG as a vector with the features from both in-
structions and functions. Further, Vestige applies the attention-based graph
neural network (GAT) [39] to generate more accurate embeddings by directly
learning from the attributed graph. GAT can learn a representative embedding
by automatically highlighting the important nodes, which are, in this case, the
more representative functions for the correct compilation provenance.

– Implementation and evaluation. We have implemented a prototype of
Vestige and tested it on several publicly available datasets with more than six
thousand binaries. For provenance identification, Vestige achieves 96% ac-
curacy for overall provenance, which significantly outperforms previous work’s
90% accuracy. Particularly for the optimization level, Vestige achieves 99%
accuracy over previous work’s 92%.

– Applying to code vulnerability detection. We successfully apply Ves-
tige as a pre-processing step to binary code similarity detection and vulner-
ability detection. In both cases, given an unknown binary, prior works would
compare it with the known vulnerable code from a pre-built database [14, 13,
40, 11, 43]. Such a strategy often leads to comparing two binary codes compiled
with different provenances. Instead, with Vestige, one can first identify the
compilation provenance of the unknown binary. Then, one only needs to com-
pare it with the known vulnerable code compiled with the same provenance.
In this way, one avoids the blind comparison and thus can improve accuracy.
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Particularly, for code similarity detection, we apply Vestige to three recent
works, BGM [14], Genius [14], and Gemini [40]. Vestige can improve the top-
1 hit rate by 27%, 13%, and 22% for BGM, Genius, and Gemini, respectively.
On detecting 20 OpenSSL vulnerabilities, Vestige helps improve the top-1
hit rate by 16%, 19%, and 26% for BGM, Genius, and Gemini, respectively.

Paper organization. Section 2 explains the use case of Vestige on binary
code similarity detection. Section 3 presents the design of Vestige, and Sec-
tion 4 shows experimental results. Section 5 summarizes related work. Section 6
discusses and concludes the paper.

2 Use Case: Binary Code Similarity Detection

This section studies the use case of Vestige in binary code similarity detection.
In the following, we discuss the background, challenge of code difference, and
Vestige solution.

In this work, we focus on the static code similarity detection methods. The
dynamic methods that leverage the dynamic execution behaviors, but face the
scalability challenge [12] are left for future work. It is also worthy to point out
that in this work we assume a binary is compiled with one compilation prove-
nance. Although it is possible to compile a binary with different settings, the
real-world software usually uses one configuration for easy maintenance and us-
ability [7]. Further, the binary code is assumed to be stripped, which means one
can not get helper information, such as section names, debugging symbols and
sections, symbol and relocation information, and compiler-generated symbols.

2.1 Background

A lot of executable binary code performing different functionalities run in the
servers, mobile devices, and Internet-of-Thing (IoT) devices [9, 33, 27]. Unfor-
tunately, a large number of vulnerabilities exist in these binaries and have be-
come the major attacking vectors [23]. For example, the researchers from In-
dependent Security Evaluators (ISE) find 124 vulnerabilities from 13 routers
and network-attached storage (NAS) devices in 2019 [5]. Also, in February 2020,
Cisco confirms the existence of five critical vulnerabilities that have affected tens
of millions of network devices [1].

Binary code similarity detection is a commonly used method to detect vul-
nerabilities [14, 13, 40, 43, 11, 25, 17]. Given an unknown binary, such a method
would compare it with the vulnerable code from a pre-built vulnerability database.
If the unknown code were similar to one vulnerable code, it would be considered
as a positive which might share the same vulnerability. The identified similar
code will be further investigated either manually or by automatic verification
methods to confirm the vulnerability. The detection of an unknown binary is
regarded as the online phase. Meanwhile, these methods usually need an of-
fline phase, which includes preparing the known vulnerable code database and
building the model, e.g., training for machine learning-based methods.
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Here we illustrate the details of binary code similarity detection with a recent
work Gemini [40]. First, for any function in the binary code, Gemini represents it
as an attributed control flow graph (ACFG), where each node in the control flow
graph is attributed as an eight-dimension feature vector, including betweenness
centrality value and the number of string constants, numeric constants, transfer
instructions, calls, instructions, arithmetic instructions, and offspring. Second,
Gemini collects n (by default 154) vulnerable functions and extracts their ACFGs
to build the known vulnerability database. Third, for an unknown binary, Gem-
ini extracts the ACFG of each function, creates query pairs with the vulnerable
functions in the vulnerability database, and computes their similarities. Assume
there are m functions in the unknown binary, Gemini would create m ∗ n query
pairs. Fourth, Gemini computes the similarity score of each function pair with
a neural network-based embedding generation method. Particularly, Gemini ap-
plies a graph embedding network to firstly generate embeddings for the ACFGs.
Later, Gemini uses the Siamese network to compute the similarity score. For
each vulnerability function, Gemini would extract top-k (e.g., k equals 50) sim-
ilar functions as positive. Finally, the security experts would verify the positive
code to confirm the vulnerability.

2.2 Code Variance from Compilation

The same source code can be compiled to completely different binary codes,
as various compilation toolchains can be used. Therefore, binary code similarity
detection methods face the challenge of code variance brought by the compilation
process. To figure out the impacts, we have studied a commonly used binary
code representation, i.e., control flow graph (CFG), under different compilation
provenances. The node in CFG denotes the basic block and the edge denotes
the control flow. It is directly or indirectly used as the key data representation
in the code similarity detection methods [14, 40, 43, 11].

In this study, we compile the OpenSSL software (version 1.0.1f) with dif-
ferent compilation configurations. The default provenance is GCC-4.8.4 with
optimization level O0 on architecture x86. Further, we compare with a higher
optimization level O3, and a different compiler Clang-3.5. Figure 2 shows the
cumulative distribution function of the similarity score between two CFGs of
the same function but from differently compiled binaries. The similarity score is
measured by the DSC similarity defined in Equation (1), where |A|, |B| denote
the vertex count of CFG A and B, |A ∩ B| denotes the minimum vertex count
between the two CFGs.

DSC(A,B) =
2 ∗ |A ∩B|
(|A|+ |B|)

(1)

From Figure 2, one can observe that both the optimization level and compiler
affect the CFGs. In particular, the optimization level shows a bigger impact, only
42% CFGs share the same size and 20% CFGs show a similarity score of less than
0.53, in which the CFGs are already quite different. The compiler also affects
the CFGs but with a smaller effect. That is, 71% CFGs share the same size.
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Fig. 2: The cumulative distributed function (CDF) of CFG size similarity for different
optimizations and compilers.

2.3 Solution with Vestige

To tackle this challenge, existing binary code similarity detection methods focus
on developing algorithms to eliminate these variances. For example, Genius uses
clustering and locality sensitive hashing [14], Gemini uses graph embedding net-
work and Siamese network [40], InnerEye uses recurrent neural networks [43],
and Asm2Vec uses PV-DM model [11]. These methods have been shown to work
well in their experiments, but the number of tested compilation provenances is
limited. For example, excluding architecture variance, they tested 12, 4, 4, and
8 for Genius, Gemini, InnerEye, and Asm2vec, respectively.

Clearly, the complete coverage of compilation provenance poses a significant
challenge. As of this writing, GCC has released 202 versions [3] and LLVM has
53 versions [2]. Each version has at least 4 optimization levels, which makes the
number of compilation provenances for these two compilers more than one thou-
sand, not to mention other factors that can also affect compilation provenance.

Besides capturing the code variance from different compilation provenances,
the all-in-one models in these methods also need to identify the difference be-
tween the binary code compiled from different source code, which is also chal-
lenging. When the compilation provenance scales up, the performance of existing
works will drop further as a result.

The key tenet of this work is that identifying compilation provenance ac-
curately will help produce better detection results of binary code similarity. As
shown in Figure 3, one can leverage Vestige to first identify the compilation
provenance of the unknown binary. With the provenance information, the fol-
lowing code similarity detector only needs to compute the similarity between
the unknown binary code and the known vulnerable code (from the vulnera-
bility database) having the same compilation provenance. That means, existing
code similarity detection methods only need to worry about the challenge from
different source codes. Further, such a solution can scale up as Vestige takes
over the burden of handling a large number of compilation provenances. With
Vestige, the performance of code similarity and vulnerability detection can be
significantly improved as we will show in §4.
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Fig. 3: Applying Vestige to binary code similarity detection. The dotted rectangle
shows the preprocessing step with provenance identification.

3 Vestige Design

This section presents the design of Vestige, including attributed function call
graph construction, provenance identification with graph neural network, and
implementation.

3.1 Overview

The architecture of Vestige is shown in Figure 4. Given a binary, Vestige
first disassembles it to assembly code. Later, Vestige extracts three types of
features, i.e., the idiom features from the instruction level, the graphlet features
on the control flow graph from the function level, and the function call graph
from the binary level. With all these features, we build a new representation,
named attributed function call graph (AFCG). Next, Vestige generates the
graph embedding for AFCG with an attention-based graph neural network.

During the training stage, Vestige tunes the graph neural network model
by the downstream task, i.e., multi-graph classification. In this case, the label is
the compilation provenance combined by compiler family, compiler version, and
optimization level.

During the inference stage, Vestige will go through the same process of
disassembling binary code and constructing AFCG, but output the predicted
compilation provenance.

3.2 Representing Binary Code as Attributed Function Call Graph

The key to provenance identification is to find the appropriate features that can
show the difference between various compilation provenances. We find there are
three levels of features that can be used in combination to identify provenance.
Together, we construct a new representation for the binary code as attributed
function call graph (AFCG). Below, we will discuss why the features are useful
for provenance identification and how we extract them.

1) Instruction level features are used because different compilers and
configurations usually have different approaches in terms of instruction usage,
register usage, instruction ordering, etc. For example, for the source code “tbio =
BIO pop(f)” in line 3 of Figure 5(a), GCC-4.8.4-O0 would use the accumulator
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Fig. 4: The architecture of Vestige. Given a binary code, Vestige first builds the
attributed function call graph by disassembling it and extracting three types of features,
i.e., idiom, graphlet, and function call graph. Later, Vestige applies the attention-
based graph neural network to predict the provenance.

register eax and two mov instructions before calling the BIO pop function. On
the other hand, GCC-4.8.4-O2 would use the base address register ebx and just
one mov instruction.

To identify the differences, we take the instruction patterns, known as idioms,
as the instruction features for provenance identification [37, 35]. These features
are generated in two steps, instruction normalization, and feature extraction.

Instruction normalization will keep the essential opcode and normalize the
operands to a general shape. Particularly, we will normalize the register, memory
address, and other user-controlled operands, such as constant and function name.
For the assembly code in Figure 5(b), we will normalize them to the code shown
in Figure 6(a).

In the second step, we extract the unique instruction patterns and their
combinations as the feature whose size is the number of covered instructions. To
improve the representativeness of the patterns, we add the wildcard to repre-
sent any instruction. For the example code, the extracted features are shown in
Figure 6(a) with ‘|’ as the instruction split symbol.

2) Function level features. Similarly, different compilation process will
affect how the basic blocks form the control flow graph (CFG). As a CFG is
extracted from a function, we consider such features at the function level. For
the example code in Figure 5(a), it is one node with GCC-4.8.4-O0 shown in
Figure 5(b), while it is split into two nodes with GCC-4.8.4-O2 shown in Fig-
ure 5(c).

Again, we extract the function features in two steps, CFG normalization
and feature extraction. First, we normalize the CFG by assigning a type value
to each node and edge. As each node is a basic block, its type value will be
decided by the category of contained instructions, e.g., string, branch, and logic
operation [24]. We classify the instructions into 14 categories and use a 14-
bit integer to represent the type, where each bit denotes whether the specific
instruction category exists or not. For the edges initiated by branch operations,
we label them based on the different types of branch operations, e.g., jnz, jge.
The normalized CFG of the example function is shown in Figure 6(b).
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(a) Source code fragment of 
CVE-2015-1792

loc_816C6F2:
mov [esp+1Ch+var_1C], ebx
call   BIO_pop
mov [esp+1Ch+var_1C], ebx
...

loc_816C6F0:
...

...
do {

tbio = BIO_pop(f);
BIO_free(f);
f = tbio;

} while (f != upto)
...

1
2
3
4
5
6
7

loc_81A85B6:
mov eax, [esp+2Ch+arg_0]
mov [esp+2Ch+var_2C], eax
call   BIO_pop
mov [esp+2Ch+var_10], eax
...

loc_824A343:
mov eax, [esp+1Ch+arg_0]
mov [esp+1Ch+var_1C], eax
call   BIO_pop
mov [esp+1Ch+var_1C], eax
...

(b) Compiled with GCC-4.8.4-O0

(c) Compiled with GCC-4.8.4-O2 (d) Compiled with Clang-5.0-O0

Fig. 5: A running example code and its assembly code with different compilation prove-
nance. (a) shows the source code fragment of CVE-2015-1792, (b) (c) (d) show its
assembly code with GCC-4.8.4-O0, GCC-4.8.4-O2, and Clang-5.0-O0, respectively.

Second, we extract different subgraphs from the normalized CFG as features.
A subgraph is regarded as a subset of the connected nodes with the correspond-
ing edges. For the example CFG in Figure 6(b), its subgraphs included G1, G2,
G3, and others. As the goal here is to mine useful subgraph patterns that can
represent the compilation provenance, we set a threshold to the interested sub-
graph size (number of nodes) to avoid mining all the possible subgraphs, which
is not scalable as it is an NP problem [15].

3) Binary level features. In this work, we especially focus on the fact that
the compilers will optimize the program from the binary level to achieve the
optimal global performance. Many compiler optimizations work on the binary
level, such as, function inlining, interprocedural dead code elimination, interpro-
cedural constant propagation, and procedure reordering [6]. Taking the function
inlining (usually enabled in O2 and O3 ) as an example, it heuristically selects
the functions worth inlining. From the binary level, one can clearly see the dif-
ference from a feature like the call relationships between functions.

We find that the function call graph (FCG), generated in the binary level, is
an effective representation to show the changes brought by different compilation
provenances. In an FCG, the node denotes a function, and the edge denotes
the call relationship. It is able to capture the difference from function changes
in terms of number, call relationship, etc. Thus, we construct the FCG as the
binary level feature.

4) Attributed function call graph (AFCG). To combine the features
from three different levels together, we newly design a representation, namely
attributed function call graph (AFCG). Taking the function call graph (FCG)
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(a) Instruction level

I1: mov rax, MEM
I2: mov rax, MEM | mov MEM, rax
I3: mov rax, MEM | * | mov MEM, rax
...

(c) Binary level

mov rax, MEM
mov MEM, rax
call rip
mov MEM, rax
...

Instruction normalization

Feature extraction

(b) Function level

E2
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D
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E2
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A

B C

E1 E1A

E2

A

B

E1 ...

CFG 
normalization

Feature 
extraction

0x81A85AC: 
do_free_upto

0x81A8C0A: 
CMS_verify

0x81A99F9: 
CMS_decrypt

0x81A9B53: 
CMS_final

0x813824B: 
BIO_free

0x8138F42: 
BIO_free_all

0x8138DAC: 
BIO_pop

0x81A88A5:CMS_En
crytedData_decrypt

0x81A8709 : 
CMS_digest_verify

Function call graph

G1 G2 G3

Fig. 6: The features in three levels for provenance identification, using the assembly
code from Figure 5(b) as an example.

as the core structure, it attributes each node (function in this case) as an initial
feature vector.

At the training phase, we need to extract the features from a number of
binaries. Since we are extracting the patterns from both instruction and CFG,
the resulted number of features is massive. One can get an impression of the
instruction features in Figure 6(a). For the first two instructions, we construct
4 features in total, 2 for single instruction, 1 for the two instructions, and 1 for
the two instructions with wildcard in-between. In our experiment with only 600
binaries, the number of extracted features is up to millions. This is known as the
feature explosion challenge, which would cause the machine learning algorithms
to take an incredibly long time to converge [26].

To solve that, we employ the feature selection technique. Particularly, we use
the mutual information method to select a reasonable number of good features.
In this case, a feature is good if it is important to classify different classes, which
can be quantified by the mutual information between the feature and class. In
the end, we select the top-k highly ranked features. Further, for the feature value,
which is initialized as the frequency, we will normalize it to [0: 1] to avoid feature
bias. Particularly, we divide each feature frequency to the maximum frequency
value among all the binaries. To this end, we build the AFCG with a reasonable
number of attributes. An example of the final AFCG is shown in Figure 4.

3.3 Identifying Provenance with Graph Neural Network

After we generate the AFCG for each binary, the problem is transformed into a
multi-class graph classification problem. Such a problem is a perfect fit for the
graph neural network (GNN) [22, 10, 39, 8], which is able to learn an embedding
for a graph and further tune the model based on the downstream task, i.e.,
multi-graph classification.

For provenance identification, we apply a recently developed graph neural
network, i.e., graph attention network (GAT) [39]. Conventional graph neural
networks, e.g., GCN [22] and structure2vec [10], iteratively learn a model by
accumulating the neighbor embeddings based on the fixed graph structure, i.e.,
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Fig. 7: Graph attention network (GAT). (a) shows the workflow, (b) explains one layer.

equally or degree-based. However, in this application, the neighbor nodes or
edges on the AFCG have different impacts on the final embedding. For example,
when generating the embedding of a node in the AFCG, the function with critical
compilation features that can be used to identify the provenance should be more
representative, and thus should be weighted more for embedding generation.
Fortunately, the graph attention network (GAT) with the attention mechanism
satisfies our requirement. GAT is able to automatically identify the important
nodes and edges and will assign larger weights to the more important ones and
smaller weights to the less important ones. We will elaborate on the details
below.

GAT takes a graph g as input, iteratively computes the node embedding
by attention on its neighbor nodes, and outputs a learned embedding e for the
whole graph as shown in Figure 7(a). GAT is stacked with L layers. Each layer
(except the input layer) takes the node embeddings from the previous layer as
input and outputs the computed node embeddings from this layer. Below, we
will discuss the details of GAT.

Attention mechanism. For the (l+1)-th layer, the node embedding computa-
tion for node v is shown in Figure 7(b). For every neighbor node of v (including
itself), GAT first learns an attention coefficient, and later computes the em-
bedding for node v. We use tlv to represent the embedding for node v at the
l-th layer which has d-dimension, and tl+1

v to represent the embedding at the
(l + 1)-th layer which has d′-dimension. For every edge connecting u and v, we
use αvu to denote the attention coefficient, which is computed from a single-layer
feedforward neural network. The formalized equation is shown in Equation (2),

αvu = softmax
(
σ
(
θ [W1t

l
v ‖W1t

l
u]
))

(2)
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where softmax(·) represents the standard softmax function which normalizes
the input vector into a probability distribution, σ(·) represents the activation
function which is the ReLU function in our setting, θ is a weight vector with 2d′

dimensions, W1 is a shared weight matrix with d′ × d dimensions, and ‖ is the
concatenation operation.

Graph convolution. After obtaining the attention coefficients from the neigh-
bors of node v, GAT will accumulate the neighbor embedding, which is the graph
convolution operation [22]. The formalized equation is shown in Equation (3).

tl+1
v = σ

 ∑
u∈N(v)

αvuW1t
l
u

 (3)

Here for each edge connecting u and v, its accumulated value will be the mul-
tiplication of the attention coefficient αvu, weight matrix W1, and embedding
tlu of node u. Followed by another activation function, one will get the node
embedding tl+1

v with d′-dimension.
Graph embedding. At the output layer, we will accumulate all the node em-

beddings in this graph to one embedding as in Equation (4),

e = W2

(∑
v∈V

tLv

)
(4)

where W2 is a weight matrix with dimension p × p and p equals to d′ of the
previous layer, e is a p dimension vector. We use the cross-entropy loss function
to compute the loss value between graph embedding and the provenance class.
Later, it backward propagates the loss value to the previous layers and optimizes
the learned model with Adam optimizer aiming at minimizing the loss value.

3.4 Implemention

Vestige includes two major components, AFCG constructor and graph atten-
tion network. The AFCG constructor is implemented on top of a binary analysis
platform, Dyninst [38]. We set the pattern size of instruction and function level
features to be 3 since larger features are slow to generate and usually have low
importance ranks. This setting already yields a million scale feature count for
the evaluated dataset (discussed in §4). We set the selected number of features
for instruction and function to be 1, 024 (studied in §4.3).

We implement the graph attention network with TensorFlow (v1.3.0) and
set the intermediate and final embedding size as 128, the number of epochs 100,
the number of iterations 4, the number of heads 2, the learning rate 0.0001. The
parameters are selected based on both accuracy and runtime (§4.3).

4 Experiment

In this section, we conduct extensive experiments to answer the following re-
search questions:
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– (RQ1) How does Vestige compare with other works on provenance identifi-
cation?

– (RQ2) How do the two key designs in Vestige, i.e., attributed function call
graph (AFCG) and graph attention network (GAT), affect the performance?

– (RQ3) How do various parameters impact the performance of Vestige,
including the number of features for constructing AFCG and the hyper-
parameters in graph attention network?

– (RQ4) How can we apply Vestige to binary code similarity detection as well
as vulnerability detection?

4.1 Experiment Setting and Dataset

We run the experiments on an internal server, which has two Intel Xeon E5-2683
(2.00 GHz) CPUs. Each CPU has 14 cores and enables hyper-threading. It is
also equipped with four Nvidia K40 GPUs, while only one is used for each run.

We use the following three datasets for the experiment.
Dataset I: Baseline dataset. We build a baseline dataset with five stan-

dard software, i.e., GNU Bash (v4.3), Diffutils (v3.3), Grep (v2.16), Tar (v1.27.1),
and Wget (v1.15). We compiled them with 24 different compilation provenances,
including six compilers, i.e., GCC-{4.6.4, 4.8.4, 5.4.1} and Clang-{3.3, 3.5, 5.0},
and four optimization levels (O0-O3) on x86 architecture. In the end, we are able
to collect 336 binaries as some software may generate multiple binaries, e.g., 4
for Diffutils. We use this dataset for evaluating provenance identification.

Dataset II: Code similarity dataset. We build a code similarity dataset
with six software, SNNS-4.2, PostgreSQL-7.2, Binutils-{2.25, 2.30}, and Coreutils-
{8.21, 8.29}. They are compiled with the same 24 compilation provenances. In
total, we get 6, 168 binaries. This dataset is used for both provenance identifica-
tion and code similarity detection.

Dataset III: Vulnerability dataset. We build a vulnerability dataset with
three versions of OpenSSL (0.9.7f, 1.0.1f, and 1.0.1n) by collecting 20 CVEs.
They are also compiled with the same 24 provenances. This dataset is used for
vulnerability detection.

The evaluation metric used for provenance identification is accuracy, which
is defined as the number of correctly classified samples over the total. As the
label distribution is balanced, the accuracy is a valid metric. For the experiments
of code similarity and vulnerability detection, the used metric is hit rate. Among
the top-k similar code, if the targeted code is included, it is a hit, otherwise, it
is a miss. Since the top-k similar codes are usually manually investigated by the
security analysts, a higher hit rate with a smaller k would be valued.

4.2 Accuracy of Provenance Identification

This section studies the accuracy of Vestige and related works on provenance
identification, which answers research questions RQ1 and RQ2. This experiment
uses the 6, 504 binaries from the baseline (dataset I) and code similarity dataset
(dataset II). We perform 10-fold cross-validation. For each binary, we guarantee
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Table 1: Accuracy of binary code provenance identification (The best are highlighted).

Origin Vestige-S2V Vestige-GAT

Optimization level 92.2% 98.7% 99.0%
Compiler version 96.8% 95.5% 97.9%
Compiler family 99.5% 99.5% 99.5%

Overall accuracy 90.2% 93.3% 96.1%

that all of its 24 provenance varieties are split into the same group so that we
can justify the generalization of the trained model. In this experiment, all the
methods use 1, 024 instruction, and function level features.

We compare with two implementations, i.e., a recent work Origin [35] and a
baseline of Vestige with a different graph neural network model, structure2vec
(S2V) [10]. We get the source code of Origin from the Dyninst group. Both
implementations are configured with the parameters leading to their best per-
formance.

Table 1 presents the accuracy for overall provenance, and specific compilation
configurations, i.e., optimization level, compiler version, and compiler family.
Each case is studied independently while keeping the other two unchanged. We
can get three consistent observations. First, Vestige outperforms other works
on provenance identification for the overall and specific provenance (RQ1). For
the overall provenance, Vestige with GAT is able to achieve 96.1% accuracy
over Origin’s 90.2%. For the specific provenances, Vestige achieves 99% accu-
racy over Origin’s 92.2% for optimization levels. For compiler versions, Vestige
achieves 97.9% accuracy over Origin’s 96.8%. For compiler family, both methods
achieve a rather high accuracy at 99.5%.

Second, GAT is effective for provenance identification (RQ2). With the same
input, Vestige with GAT outperforms Vestige with S2V for both overall and
specific compilation provenances as shown in Table 1. The improvement demon-
strates the effectiveness of the attention mechanism on capturing the important
nodes and features towards the correct compilation provenance.

Third, AFCG is an efficient representation for the binary code towards com-
pilation provenance identification, especially for optimization level (RQ2). We
intend to compare two implementations with the only difference in AFCG, while
the machine learning method in Origin can not take AFCG as input and the
graph neural network can not sustain the input of Origin. From both Table 1
and Figure 8, we can see the effectiveness of AFCG. From Table 1, one can see
Vestige-S2V gets 98.7% accuracy over Origin’s 92.2% for optimization level.

Further, Figure 8 shows the accuracy changes for overall and specific compi-
lation provenance with a different number of instruction and function features.
Interestingly, with only 16 features, Vestige can achieve 98% accuracy for op-
timization level, up to 31% higher than Origin. This clearly shows the impact
of binary-level features for provenance identification. AFCG is able to identify
optimization level differences since many optimizations work on the binary level.
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Fig. 8: Accuracy of binary provenance identification with different number of features
for (a) overall, (b) optimization level, (c) compiler version, and (d) compiler family.

Origin crashes when adding more features beyond 1, 024 due to the large inter-
mediate data size crashes the used tool, CRFsuite [31].

4.3 Sensitivity Study

This section conducts sensitivity study for the feature count in AFCG and the
hyper-parameters in GAT (RQ3). We use the same dataset from the previous
experiment and also perform 10-fold cross validation.

1) Feature count in AFCG denotes the total number of instruction and
function level features. This is the major parameter for constructing AFCG,
as only a small number (thousand scale) of the total features (million scale)
will be selected. We perform an extensive study on this parameter by selecting
different number of features. Particularly, we test the provenance accuracy of
overall, optimization level, compiler version, and compiler family for the number
of features from 16 to 4, 096 with the power of two. The results are shown in
Figure 8.

We can get two consistent observations in this experiment. First, Vestige
and the two compared works mostly converge with around 1, 024 features. For
the overall accuracy, Vestige-GAT achieves 96.1% with 1, 024 features. With
4, 096 features, the accuracy only improves a little bit 0.8%. Similar observation
can be concluded on the accuracy of Vestige-S2V. To this end, we can conclude
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Fig. 9: Sensitivity study of hyper-parameters in GAT, including (a) epoch number, (b)
embedding size, (c) iteration count, and (d) head count.

that 1, 024 instruction and function level features are sufficient for provenance
identification.

Second, the binary level feature can help to effectively identify the changes
from different provenance, especially the optimization level, which has been stud-
ied in the previous experiment. For the compiler version, Vestige is able to get
86% with 16 initial features, comparing with Vestige-S2V’s 81% and Origin’s
68%. Interestingly, starting from 128 features, Origin performs better than Ves-
tige-S2V-based method. We believe this is because the S2V model is not able
to emphasize the nodes relating to the correct provenance since it equally weighs
the neighbor nodes. For compiler family, it is relatively easy to predict as all the
methods are able to achieve high accuracy, i.e., over 98% from 16 features.

2) Hyper-parameters in GAT are studied in this experiment. Figure 9
presents the accuracy of Vestige with different GAT hyper-parameters, includ-
ing number of epochs, embedding size, iteration count, and head count. For each
parameter test, we keep the others as default (discussed in §3.4).

Figure 9(a) presents the overall and specific provenance accuracy against the
number of epochs. We run the test dataset every 10 training epochs. With only
20 epochs, Vestige already reaches a stable state, where the overall accuracy
is around 95%, both optimization level and compiler family are close to 100%
accuracy, and the compiler version is above 95%. In this experiment, we are
training with a large number of binaries, i.e., 5, 854, each epoch takes about 10.3
minutes. That means, one is able to train a usable Vestige model within 206
minutes.
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Figure 9(b) presents the accuracy against different embedding size. We test
five embedding sizes, i.e., 32, 64, 128, 256, and 512. One can see that the op-
timization level and compiler family achieve high accuracy regardless of the
embedding size. However, the overall accuracy and compiler version increase to
a stable state from embedding size 128. As larger embedding sizes take longer
time to train, e.g., embedding size 512 costs 26% more time than size 128 per
epoch, we select 128 as the embedding size.

Figure 9(c) shows the accuracy against different number of iterations. We
test six iteration counts from 1 to 6. The optimization level and compiler family
achieve high accuracy from 3 iterations, while the overall and compiler version
achieve high accuracy from 4 iterations. Although the iteration count does not
significantly affect the runtime, training with 6 iterations still costs 3% more
time than 4 iterations per epoch. Therefore, we set the iteration count to be 4.

Figure 9(d) shows the accuracy against different number of heads from 1 to
5. One can observe that starting from 2 heads, the model achieves high accuracy
for the overall provenance as well as each specific provenance. For the runtime,
training with 5 heads would incur 11% more time per epoch. Therefore, we set
the head count to 2.

4.4 Case Study: Code Similarity Detection

This section applies Vestige to binary code similarity detection, and later vul-
nerability detection (RQ4). Particularly, we apply three recent code similarity
detection methods, i.e., Gemini [40], Genius [14], and BGM [14]. They convert
each binary function as an attributed control flow graph (ACFG), which is pre-
sented in §2. We illustrate their details in the following.

– Bipartite graph matching (BGM) is a baseline method to evaluate the pairwise
graph-based matching approaches [14, 40]. BGM regards the similarity score
of two binary functions as the graph edit distance-based similarity between
the two ACFGs. We get its source code from the authors of Genius [14].

– Genius is the first work of using graph embedding for binary code similarity
detection [14]. Since each function is represented as an ACFG, Genius uses
graph edit distance to compute the similarity of two functions. Later, it applies
the bag-of-words method to create a high-level embedding for each function.
During online searching, it uses semantic hashing on the embeddings to quickly
get the similar code. We get part of the source code from the authors and
reimplement the rest.

– Gemini presents the first work of using a graph neural network to generate
embeddings for binary code similarity detection [40]. It uses the Siamese net-
work to supervise the embedding generation. The Siamese network takes two
embeddings as input with the label as either +1 for similar and -1 for different,
computes the loss value, and back propagates it to embedding generation. We
get its source code from the authors.
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Table 2: Top-1 and top-5 hit rate for the original methods and new solutions with
Vestige on binary code similarity detection.

Top-1 Top-5
Original + Vestige Original + Vestige

BGM 29% 56% 45% 89%
Genius 51% 64% 69% 91%
Gemini 66% 87% 77% 94%

1) Case #1: Code Similarity Detection.

The code similarity dataset (Dataset II) is used for this experiment. BGM
does not need training, but it needs tuning the cost weight for the eight attributes
in ACFG. We use the default values from [40] as they get them through large
scale testing. Both Genius and Gemini need the training to be able to identify
similar code. Realizing the binaries from the same software may share similar
code, we split the dataset into training and testing from the software level. That
is, we use the 600 binaries from software SNNS and PostgreSQL as training
dataset, and the 5, 568 binaries from Binutils-{2.25, 2.30} and Coreutils-{8.21,
8.29} as testing dataset. Vestige uses the same split for the training and testing
dataset. Such dataset splitting would show the generability of both Vestige and
code similarity detection methods.

During testing, we randomly select 1, 000 different query functions from the
testing dataset. For each query function, we will search the targeted binaries,
which are known to have matches to the query function. In the end, we compute
the average hit rate of the 1, 000 queries under different top-k values.

To integrate with the code similarity methods, during the online phase, we
first use Vestige to figure out the compilation provenance of the query binary,
and later apply the code similarity methods to compute function similarities
with the predicted provenance. In this case, Vestige gets 82% accuracy for the
whole compilation provenance, and 100%, 96% and 84% accuracy for compiler
family, compiler version, and optimization level, respectively. Although the per-
formance drops compared with cross validation result from §4.2, it is reasonable
as the training and testing are on a completely different dataset and the size
of the testing dataset is much larger than the training. In fact, this shows the
generability of our method in a practical scenario.

Table 2 shows the hit rate of top-1 and top-5 for the three code similarity
detection methods without and with our provenance identifier. We can observe
that provenance identification is able to significantly improve the performance
of all the works. Particularly, for the top-1 hit rate, the original code similarity
detection methods, BGM, Genius, and Gemini get 29%, 51%, and 66%, respec-
tively. Vestige is able to improve the hit rate by 27%, 13%, and 22%, for BGM,
Genius, and Gemini, respectively. Top-1 hit rate is most important because the
security analysts would start the manual investigation from the first one. Fur-
ther, for the top-5 hit rate, the provenance identifier is able to improve BGM,
Genius, and Gemini by 44%, 22%, and 17%, respectively. Interestingly, the sim-
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Table 3: The average hit rate (%) of top-1 candidates on the 20 CVEs. +P represents
adding our provenance identifier Vestige to their methods.

CVE Query BGM : +P Genius : +P Gemini : +P

2015-0209 1.0.1f 46 : 67 50 : 71 50 : 88
2014-0195 1.0.1f 33 : 42 42 : 58 54 : 92
2016-2106 1.0.1f 58 : 63 58 : 63 63 : 83
2012-0027 1.0.1f 42 : 58 58 : 67 63 : 88
2014-3513 1.0.1f 46 : 71 50 : 83 67 : 92
2015-1791 1.0.1f 50 : 67 50 : 83 71 : 96
2015-3196 1.0.1f 42 : 67 38 : 75 58 : 92
2014-3567 1.0.1f 22 : 56 33 : 67 50 : 79
2016-0797 1.0.1n 21 : 41 25 : 41 38 : 83
2016-2180 1.0.1n 25 : 42 29 : 83 46 : 95
2016-2105 0.9.7f 58 : 67 47 : 58 58 : 83
2016-2176 1.0.1n 38 : 42 38 : 46 50 : 67
2016-2109 0.9.7f 10 : 29 30 : 38 40 : 54
2015-3195 0.9.7f 25 : 42 50 : 63 58 : 83
2016-2182 0.9.7f 25 : 42 33 : 50 46 : 58
2016-2178 0.9.7f 13 : 25 19 : 42 25 : 63
2015-0292 0.9.7f 37 : 42 46 : 54 50 : 67
2016-2105 0.9.7f 58 : 63 58 : 63 67 : 71
2016-2842 1.0.1n 5 : 25 10 : 33 19 : 50
2016-0705 1.0.1n 13 : 21 17 : 21 19 : 42

Average - 33 : 49 39 : 58 50 : 76

ple baseline method, BGM, with Vestige is able to reach a rather high 89%
hit rate. Note that, the hit rates of prior works align with their original reports
since we only pick up the most strict and meaningful top-1 and top-5 hit rates.

2) Case #2: Vulnerability Detection.

In this study, we extend the evaluation of general code similarity detection
to the specific case of vulnerability detection. Particularly, we reuse the trained
models of the three code similarity works and Vestige from the previous ex-
periment.

We use the vulnerability dataset (Dataset III), and take the ACFGs from
OpenSSL-1.0.1f as the vulnerability database. For each binary, we will query
against the binaries with 24 different compilation provenances from OpenSSL-
1.0.1f. We report the average results of all the binaries with different compilation
provenances for that OpenSSL version. Our provenance identifier is able to get
71% accuracy for the overall provenance, and 94%, 78%, 75% for compiler family,
compiler version, and optimization level, respectively.

Table 3 shows the top-1 hit rate of the three works without and with Vestige
for the 20 CVEs. Interestingly, the provenance identification of Vestige is able
to significantly improve the performance of the original works on code similarity
detection. One can see that, the original code similarity works get 50%, 39%, 33%
top-1 hit rate for Gemini, Genius, and BGM, respectively. With Vestige, the
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top-1 hit rate improves to 76%, 58%, and 49% for Gemini, Genius, and BGM,
respectively.

To understand the false positives of vulnerability detection, we take a deep
look at the specific cases. A false positive is likely to happen if a queried nor-
mal function shares similar ACFG with the vulnerable function. Although it is
uncommon for two completely different functions to have similar ACFGs, we
do observe some occurrences, e.g., CVE-2016-0705 which is a double free vul-
nerability in function dsa priv decode. In this case, another function, named
d2i ECPrivateKey, is ranked as top-1 for some queries, which encodes and de-
codes functions for saving and reading a key data structure. We have identified
two factors that explain this false positive. First, although the source codes of
the two functions are different, they share some similarities. Both of them are
related to private key decode, which results in them both invoking a number of
similar private key related functions. And the two functions have similar cod-
ing characteristics, i.e., both have many conditional branches (including if and
goto), and neither has loop operations. Thus, their structures and code features
are similar. Second, from the binary level, these two functions share quite sim-
ilar graph structures. For example, for OpenSSL version 1.0.1f compiled with
Clang-3.3-O0, the CFG of dsa priv decode has 44 nodes and 61 edges, while
d2i ECPrivateKey has 40 nodes and 58 edges. In short, in this case, the best
traditional solution, i.e., Gemini, shows the top-1 hit rate of 50% across 24 va-
rieties. However, with Vestige, the hit rate improves to 76%.

5 Related Work

The first work on binary code compilation provenance identification is done by
Rosenblum et al. [36]. They extract the instruction level features, i.e., idioms,
and train a provenance identification model with the linear conditional random
fields (CRF) method. Further, they design Origin by adding another type of
feature, i.e., the graphlet features from function level [35]. They still use the
same linear CRF model. Although there are two more proposed works, Origin
still achieves the best performance [28]. BinComp builds a three-layer prove-
nance identification model [34]. The first layer learns the code transformation
rules with supervised learning. The second layer extracts the statistical features
and labels compiler-related functions. The third layer identifies the compiler
version and optimization level from the semantic features. BinComp relies on
compiler helper information, which is affected by a complete strip. Massarelli et
al. design a graph embedding neural network for provenance identification [28].
They build an attributed control flow graph by representing each basic block
as an embedding with natural language processing (NLP) models. Using NLP
model is promising, but they also miss the important binary level features. o-
glassesX [32] identifies the compilation provenance from a short code fragment
using a deep learning model with attention mechanism and convolutional neu-
ral network. However, the compiler version and optimization level are not well
differentiated. For example, the optimization level is only classified as either low
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(O0) or high (O3). We only compared with Origin and a variant of Vestige for
two reasons. First, we were not able to find the source code of some other works,
e.g., BinComp [34]. Second, even if we got the source code, e.g., o-glassesX [32]
(we really appreciate their effors of releasing them), we were not able to run them
on our dataset due to failures on configuring the required disassembly tools.

6 Discussion and Conclusion

The interpretation of machine learning methods, especially neural networks, is
an open challenge. Vestige uses one graph-based neural network, i.e., graph
attention network. We have tried to interpret Vestige from the perspective of
extracting useful features towards code provenance identification, i.e., the three-
level features investigated in §3. Recently, we see several interesting methods for
graph neural network explanation [42]. In the future, we would try to explain
Vestige with such methods. Though Vestige uses a graph neural network, it
takes reasonable time for training and inference. We also see some interesting
works on accerelating the computation of graph algorithms [19, 18, 20], which we
would like to leverage in the future to further improve the runtime performance.

In this work, we designed Vestige, a binary code provenance identification
framework with a graph neural network. Vestige designs a new representa-
tion of binary code, i.e., attributed function call graph (AFCG) and applies an
attention-based graph neural network, graph attention network. We have tested
Vestige on several publicly available datasets with more than six thousand
binaries. Vestige outperforms state-of-the-art by 6% for overall provenance.
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