Aqwla* Adaptlve ParaIIeI Computation of Graph
" Connectlwty Querles 2 .

Yuedejl i | H HOWIe Huang

Sy Graph Computlng Lab
George Washlngton Unlver5|ty

Part |: Introduction

Graph Is All Around

&
A4
| int X = source() |
void foo ()
{ v’
int x = source(); [if x<mxy |}——
if (x < MAX) o
{ v
int y = 2 * X; | int y = 2 * x |
sink (y); £ false
}
}

Source: FEMA

<

* Directed

* Undirected

« XCC to represent all

Graph Connectivity Algorithms

* Weakly connected
component (WCC)

* Strongly connected
component (SCC)

* Connected component (CC)

* Biconnected component

(BiCC), articulation point Bridge:
(AP) {1.5,9-11,
* Bridgeless connected 12-13}

component (BgCC), Bridge

Applications

* Graph analytics * Pattern recognition * Cybersecurity
* Directed acyc"c graph ° Connected-component ¢ Spammlng botnet
(DAG) = SCC labeling in computer vision detection > CC
- CC [NSDP09]
* Betweenness centrality
(BC) = BiCC [PPoPP’6] * SBV-Cut node clustering * Suspicious DNS query 2
- CC, AP, bridge SCC [ICNP’10]
[DKE’12]

[PPoPP’16] Lei Wang, Fan Yang, Liangji Zhuang, Huimin Cui, Fang Lv, and Xiaobing Feng. Articulation points guided redundancy elimination for betweenness centrality.
Proceedings of PPoPP, 2016

[DKE’12] Kim, Mijung, and K. Selguk Candan. "SBV-Cut: Vertex-cut based graph partitioning using structural balance vertices." Data & Knowledge Engineering (2012).
[NSDI'09] YaoZhao,YinglianXie,FangYu,QifaKe,YuanYu,YanChen,andEliotGillum. 2009. BotGraph: Large Scale Spamming Botnet Detection. Proceedings of NSDI, (2009)
[ICNP’ 10] Nan Jiang et al. 2010. Identifying suspicious activities through dns failure graph analysis. Proceedings of ICNP (2010).

5

GW

Motivation

Existing parallel graph computation frameworks
only supporta limited number of connectivity
algorithmes.

Different connected components share similar
heterogeneous properties, similar computation
techniques, while existing systems did not take
advantage of them.

Existing methods only provide complete
computation, while many queries can actually be
answered with partial computation.

Boss
V%60

Is this graph connected!?

GW

Part 2: Aquila Framework

o0

Query: Is the
graph
connected!?

— EEE I EE B B B B B B B B EE

-
7’

Aquila Overview

pom TN Em Em Em EE M M MR MR MR MR MR M MR MR MR EE EE EE EE EE EE R R EE R R Em R

transformation

Query

~

Workload
reduction

Adaptive
parallel
computation

Result

[
\

Partial

computation

Adaptive parallel

T O B B B B O O SNBSS BN BN BN BN BN BN BN RS BN BN BN BN BN BN BN BN B G B B G A M B S S e e e e e

Complete computation Trim
Largest XCC Single parent
Small XCC only (SPO)
AP/Bridge

Enhanced BFS

e s o o o o o e e e e e . .

Technique #1: Query Transformation

Query |: Compute

Iargest CC
* Complete computation
* Partial computation 0 ?
’ Query 2: Compute

* Largest XCC small CC ..

* Small XCC

. . Query 3: Compute

AP and Bridge AP/Bridge AP: {5, 9}
@ Bridge:{I-5,

9-11,12-13}

GW

Benefit of Small XCC Query

BECC BSCC mBiCC 1 BgCC

diddddiddl1d

* Over complete computation

o 7x, 8x, 132x, 2,137x for
(W)CC, SCC, BiCC, and
BgCC, respectively

* Over selecting an arbitrary
pivot

* 6x, 85x, 62x, 209x for
(W)CC, SCC, BiCC, and
BgCC, respectively

8192
2048

Speedup (log2 scale)
o w oo =
Un DM 0O NN 0 N

512

N
©

w
N

Speedup (log2 scale)

N 00

(a) Speedup over Complete Computatlon

RD AVG

mCC wmSCC mBiCC =BgCC

woedabliui

WE WL
(b) Speedup over selectlng an arbltrary pIVOt

RD AVG

Benefit of Largest XCC Query

* |.2x, I.1x, 1.03x, and |.1x for (W)CC, SCC, BiCC, and BgCC, respectively

BECC mSCC EBiCC " BgCC
1.8

1.6

|.4

1.2
0
BD PK L WE WL FB ™W ™ FR RM RD AVG
11

Speedup
o0 -

o

GW

Benefit of AP and Bridge Query

B Boost B DFS # Slota_ BFS " Slota_ LP W Aquila
speedup over Boost, DFS,

e ELLLULR L

complete computation, BD WE WL ™ ™ RD AVG
respectively

1024

* Articulation point (AP)

* 423x, 43x, 50x, 2.3x, 2.5x

N
AR
o A~ o

Speedup (log2 scale)

R

= DFS = Aquila

* Bridge 2

* |2x and |.3x speedup over
DFS and Aquila’s complete o l I- |- I- I-
computation ; I_ L I. I_ I_

WE WL RD AVG

Speeedup
»

Technique #2: Workload Reduction

* State-of-the-art BiCC computation algorithm Algorithm 1: bfsBiCC(G, *level, *parent)

[HIPC’ I 4] 1 inOt = SeleCtPiVOt(G);

* Lemma |: On the constructed BFS tree, 2 bfs(G, level, parent);
for any non-root vertex p, after removing 3 [foreach v € reverseBfsOrder(G) do
it, if any of its children cannot reach a * | P =parent[v];
vertex at the same level of p, then p is an 5 | [=bisConstrained(G, v, p, level);

.. : 6 if [< level[p] then
AP. Similarly for the bridge. 7 |_ Mark the visited edges as one BiCC;

* Observation

* lt needs to run up to |V| BFSes, but only
less than | % of them will find a BiCC.

[HiPC 14] George M Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity algorithms for multicore platforms. Proceedings of HiPC GW
13

Technique #2: Workload Reduction

* Single parent only (SPO) technique

* Lemma 2: For any non-root vertex p, after removing it, if one of its children v can
reach a vertex at the same level of p, then p is not an AP from the view of v. Not
checking vertex v will not affect the correctness. Similarly for the bridge.

* Two types of second parent

* Direct & Sibling induced

level: i

level: i+

(a) Direct second parent " (b) Sibling induced second parent GW

Technique #2: Workload Reduction

* Trim
* Quickly remove trivial XCCs as the real-world graphs have a large number of them
* Leverage the existing size-| and size-2 trim for CC and SCC

* Design new trim patterns for BiCC, BgCC, and related algorithms

® ®/@3@&

(a) Size-| XCC (b) ccwee (c) SCC (d) BICC/BgCC
. GW

Benefits of Workload Reduction

* Trim

* 21% for both BiCC and BgCC
- SPO

* 74% for BiCC, 77% for BgCC

* Together
* 95% for BiCC (upperbound 99.6%)
* 98% for BgCC (upperbound 99.7%)

10

o

8

o

6

o

4

o

2

o O

10

o

8

o

6

o

4

o

2

o O

16

B Trim MTrim+SPO ™ Upperbound

L]

BD PK U WE WL FB T™W TM FR RM RD AVG
(a) BiCC

B Trim ®mTrim+SPO = Upperbound

I

BD PK LI WE WL FB TW TM FR RM RD AVG
(b) BgCC

GW

Technique #3: Adaptive Parallel Computation

108 o 108 1 I A
107 " WikiLinkEn — 102{ = _\Il_VilftitLin'\I;lE_n =
. . 6 ® TwitterMpi — 108 - ¢ TwitterMpi —
* Observation: Irregular task property 1 . ey 107 7
5 100, IR]
o . — o) I
* A few large XCCs take majority =100 % =100]
9
of the graph and their sizes are Ot N e 0L L g 1]
o 1 10 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
close to the order of graph size 10%10° 107107 10010710710 10 102 10° 10% 10° 108 107 10% 10
* The restis a large number of 108 T T T T T L T T S e e I
L. . 107 o - Wil.(iLinkE.n 7 107£ " WilfiLinkE.n u
trivial XCCs whose count is close 81% | " Tl g 102 ® TwitterMpi
. O B - % _
to the order of graph size as well ~ Z10* 1 810
©10% /= o 1 ©108
H | mOg B H+ 2
102 |~ o g8 10
10 *"h, : 10
1 1
110 102102 10* 10° 10° 107 108 10° 110 10210° 10* 10° 10° 107 10° 10°
of edges # of vertices

GW

17

Technique #3: Adaptive Parallel Computation

* Data parallel vs. task parallel

* Data parallel = all the “workers” work together for one task

* Fit for the large tasks in XCC

* Task parallel 2 each “worker” works for a different task

* Fit for the rest tasks in XCC

i i s s

[Taskl Task 1] [Task2] --- |Taskn

GW

18

BFS for CC Computation

Pros: Efficient for finding one specific CC

Cons: Low efficient for many CCs

;%@ N N 0'9?00

(a) An example graph (b) BFS tree,the (c) Start the 2"d (d) Repeat with (e) End of CC
identified CC BFS on the the 34 BFS computation

remaining graph GW

19

Label Propagation for CC Computation

* Pros: can find all the CCs by running once (although several iterations)

* Cons: inflated workload

Rk gt
IO, [@@
a0-9 ¢ a0 0 ® 20
4 © O
Frontier queue [0 |1 |2 |..|11|12]|13 3|/4|5|6|7|8|9]|10]|11(13 1/6|8]9|10]11
(f) Labelinitialization (g) It iteration of label propagation (h) 2"¢iteration (i) 3™ iteration

GW

20

Technique #3: Adaptive Parallel Computation

* Large task: Data parallel
Enh d
* Enhanced parallel BFS = Pa:aﬁgf;,:s
¢ Multi-pivot @ 1
= Task arge task
* Adaptive synchronization [SC’|8] classification Halol [prepe e
Q;Q - < (CC, SCC)
’
Small tasks Q;S OO 1. parallel
. i Small tasl
Label propagation - CC, SCC Ml @sks o rEereor RS
« Concurrent BFS - BiCC, BgCC (BICC, BgCC)

[SC 18] Yuede Ji, Hang Liu, and H Howie Huang. 2018. iSpan: Parallel Identification of Strongly Connected Components with Spanning Trees. Proceedings of SC (2018). GW
21

Part 3: Experiment

22

Graph Benchmarks

Graph Abbrev. | Description # Nodes | # Directed | # Undirected # CCs | Largest CC

Edges Edges Percentage
Baidu BD Baidu Baike hyperlink network 2.IM 17.8M 34M 15,561 98.4%
Pokec PK Pokec online social network |.6M 30.6M 44.6M | 100%
Livejournal L Livejournal online social network 4.8M 68.5M 85.7M 1,876 99.9%
WikiEn WE Wikipedia hyperlink network 18.3M 172.2M 253.8M 1,366 99.9%
WikiLinkEn | WL Wikipedia hyperlink network 11.2M 340.3M 516.9M 3,061 99.9%
Facebook FB Facebook connection 96.1M 679.7M |.2B 5 99.9%
TwitterWww | TW Twitter user following network 41.7M |.5B 2.4B | 100%
TwitterMpi ™ Twitter user following network 52.6M 2B 3.2B 29,533 99.9%
Friendster FR Friendster friendship network 68.3M 2.6B 3.6B 323,276 98.7%
RMAT RM R-MAT generator 4M 256M 506.2M |.9M 52.1%
Random RD Gtgraph generator 4M 256M 512M | 100%

23

GW

Experiment Setting

* Hardware
* A server with two Intel Xeon Gold 6126 CPUs
* Each CPU has 12 cores
* Hyper-threading enabled
* Software
« GCC48.5
* OpenMP 3.1

* Optimization level: -O3

24

GW

Compared Works

* State-of-the-art method for each XCC

* Multistep for CC [IPDPS’14], iSpan for SCC [SC’I 8], Slota_BFS for BiCC
[HIPC’14]

* Popular graph computation systems

* Galois [SOSP’| 3], X-Stream [SOSP’13], GraphChi [OSDI’'l2], Ligra [PPoPP’l 3]
* Other works

* Hong’s FW-BW method for SCC [SC’I 3], Slota_LP for BiCC [HIiPC’14]

* Serial implementations: DFS-based, boost graph library

GW

25

Complete Computation Performance

* (Weakly) Connected Component, (W)CC
* State-of-the-art: Multistep (5.9x)

* Four graph systems: Galois (53x), X-Stream (1,548), Ligra (264x), GraphChi (3 |x)

Serial implementations: DFS (67x), Boost (359x)

M Boost mDFS m X-Stream Galois_Async B Galois LP
M Multistep Wligra_LP M Ligra_shortcut B GraphChi_lIp B Craphchi_uf

FR RM RD

65536
16384
4096

1024
25
|
BD PK L WE WL FB ™W
26

A O

Speedup (log? scale)
(o)}

N

1

AVG

Speedup (log2 scale)

Complete Computation Performance

* Strongly Connected Component (SCC)
* State-of-the-art:iSpan (1.Ix)
* Two parallel methods: Multistep (3.6x), Hong (3.7x)
* Two graph systems: X-Stream (I,191x), GraphChi (918x)

* Serial implementations: Boost (183x), DFS (83x)
® Boost mDFS m X-Stream GraphChi M Multistep ® Hong W iSpan

ILHLHlth[IlILI[ILI[Ili[
BD PK L WE WL FB T™W ™ FR RM RD AVG
27

8192

N
o
A
(o]

512
12

o w
i N o N ®

GW

Complete Computation Performance

* BiConnected Component (BiCC)
* State-of-the-art: Slota_BFS (21x)
 Slota’s label propagation method, Slota LP (23x)

* Serial implementations: Boost (223x), DFS (22x)

M Boost = DFS W Slota_BFS
512

256
128 |
2 64 | | I I
BD PK L WE WL FB ™ ™ FR RM RD
28

cale)

Speedup (log2
— N0 oD

“Slota_LP

Complete Computation Performance

* Bridgeless Connected Component (BgCC)

* Serial implementations: DFS (23x)

edup

Spe

19
17
I5
13
I

0

— W U1

N I I I I L] l I I I n
BD PK L WE WL FB ™ ™ FR RM RD

29

AVG

GW

50

Speedup
w
)

N
o

10
0

Technique Benefit

B Trim ®Trim+Task = Trim+Task+Enhance

.--I—‘.--IJJI—J

BD PK Lj WEWL FB TW TM FR RM RD AVG
(a) CC

H Trim

B Trim+SPO

B Trim+SPO+Task
Trim+SPO+Task+Enhance

J-lJ-IJ-lJ_I 1xl

BD PK Lj WE WL FB TW TM FR RM RD AVG
(c) BiCC

0
8
6
4

Speedup

2
0

8
6

4

Speedup

30

BTrim ®Trim+Task ® Trim+Task+Enhance

an‘JJJJJaJJ

BD PK Lj WEWL FB TW TM FR RM RD AVG
(b) SCC

B Trim

B Trim+SPO

= Trim+SPO+Task
Trim+SPO+Task+Enhance

Z.Iljlinﬂluun

BD PK L WE WL FB TW TM FR RM RD AVG

GW

Part 4: Conclusion

31

Conclusion

New framework specialized for graph connectivity algorithms
New computation strategies towards partial computation queries
Adaptive parallel computation strategies with new techniques, e.g., single parent only

Evaluation: outperform previous works for (W)CC, SCC, BiCC, and BgCC

GW

32

25

Thank You & Questions

Source code will be available at https://github.com/iHeartGraph/Aquila

Contact us: yuedeji@gwu.edu, howie@gwu.edu

GW

33

