
Aquila: Adaptive Parallel Computation of
Graph ConnectivityQueries

Yuede Ji
Graph Computing Lab

George Washington University
yuedeji@gwu.edu

H. Howie Huang
Graph Computing Lab

George Washington University
howie@gwu.edu

ABSTRACT

Graph connectivity algorithms answer whether two nodes in a
graph are connected under specific conditions, which are beneficial
to a number of applications, such as pattern recognition and cy-
bersecurity. Unfortunately, existing graph computing frameworks
support only a small number of connectivity algorithms and achieve
low computation parallelism. In this paper, we have designed an
adaptive parallel computation framework, Aqila, that covers a
wide range of different highly optimized graph connectivity algo-
rithms. Given a graph, Aqila first transforms the query if it can
be answered with partial computation. During the computation,
Aqila is able to greatly reduce the workload by up to 98%. Fur-
thermore, Aqila identifies the irregular tasks in the connectivity
algorithms and applies different parallel strategies for different
tasks. As a result, Aqila significantly outperforms existing sys-
tems such as Multistep, Galois, Ligra, GraphChi, X-Stream, DFS,
and Boost, by average 13×, 53×, 264×, 364×, 1, 369×, 45×, and 255×,
respectively.

KEYWORDS

graph; connectivity; parallel computation

ACM Reference Format:

Yuede Ji and H. Howie Huang . 2020. Aqila: Adaptive Parallel Computation
of Graph Connectivity Queries. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’20), June 23–26, 2020, Stockholm, Sweden.ACM,NewYork, NY, USA, 12 pages.
https://doi.org/10.1145/3369583.3392690

1 INTRODUCTION

Graph is a natural representation for various types of data, such as
social network [8, 26, 40], road map [9], and computer network [7].
Tomine useful knowledge from the graphs, multiple graph computa-
tion systems have been proposed recently [4, 11, 19, 30, 32, 34, 39],
which are able to efficiently compute some commonly used al-
gorithms, including breadth-first search (BFS), PageRank, single
source shortest path, and triangle counting. However, there are a
group of important algorithms — the graph connectivity algorithms,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’20, June 23–26, 2020, Stockholm, Sweden
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7052-3/20/06. . . $15.00
https://doi.org/10.1145/3369583.3392690

SCC
0

4
5

8

1

9

6

11

7

2 3

10
12 13

0

4
5

8

1

9

6

11

7

2 3

10
12 13

0

4
5

8

1

9

6

11

7

2 3

10
12 13

0

4
5

8

1

9

6

11

7

2 3

10
12 13

0

4
5

8

1

9

6

11

7

2 3

10
12 13

BgCC

(W)CC

BiCC

AP: {5, 9}
Bridge:
{1-5, 9-11,
12-13}

Figure 1: For the example graph, the WCC and SCC are

shown on the top. Assuming the edges are undirected, the

CCs are shown in the top left, BiCC and BgCC in the bot-

tom. Each shaded area is an XCC.

which unfortunately are not well supported by existing graph sys-
tems. The graph connectivity algorithms answerwhether two nodes
in a graph are connected under some conditions [17]. Depending
on the edge type, the commonly used connectivity algorithms can
be classified into two categories:

For directed graphs, weakly connected component (WCC) and
strongly connected component (SCC) are most popular. A WCC is
the maximal subgraph where there is at least one path between any
two nodes if each directed edge were considered as undirected. The
example graph in Figure 1 has three WCCs as shown on the top
left. On the other hand, an SCC is the maximal subgraph where any
node has at least one directed path to all the others. The example
graph has six SCCs as shown on the top right of Figure 1.

For undirected graphs, the algorithms such as connected com-
ponent (CC), biconnected component (BiCC), and bridgeless con-
nected component (BgCC) are commonly used. A CC is the max-
imal subgraph where any two nodes share at least one path. The
CCs of the above example graph are same to WCC, without edge
directions, as shown on the top left of Figure 1. A BiCC is the maxi-
mal subgraph without any articulation point (AP), i.e., cut vertex,
whose removal will increase the number of connected components.
Assuming the edges in the example graph are undirected, there
are two APs, i.e., vertex 5 and 9, and six BiCCs, where AP vertex 5
appears in three different BiCCs. Moreover, a BgCC is the maximal
subgraph without any bridge, i.e., cut edge, whose removal will
also increase the number of connected components. There are three
bridges and six BgCCs for the example graph shown on the bottom

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

149

https://doi.org/10.1145/3369583.3392690
https://doi.org/10.1145/3369583.3392690

right of Figure 1. In this paper, we use the term of XCC to represent
the set of WCC, SCC, CC, BiCC, and BgCC.

1.1 Motivation

This work is motivated by three main observations. First, exist-
ing parallel graph computation frameworks only support a limited
number of connectivity algorithms.While most of them, e.g., Power-
Graph [19], GraphChi [32], GraphX [20], X-Stream [39], Ligra [42],
PowerLyra [11], and Galois [37], can compute CC, only a few such
as GraphChi and X-Stream are able to compute SCC. Unfortunately,
none of these systems are able to compute more challenging algo-
rithms such as BiCC or BgCC. There are also prior works targeting
a specific problem, e.g., Hong’s method [23] for SCC, iSpan [27]
for SCC, and Multistep [45] for CC and SCC. As a result, many
high-level applications continue to use inefficient implementations
of connectivity algorithms. For example, a recent work [50] on
betweenness centrality computation still uses the serial Tarjan’s
algorithm to compute the biconnected components.

Second, existingmethods only provide the complete computation
of the algorithm on the entire graph. For example, for a frequently
asked query of “is this graph connected?”, one can identify all the
CCs and later verify whether there exist more than one CC. This
method is used in current graph frameworks [32, 37]. In this work,
we have observed that many connectivity queries can actually be
answered with partial computation, which does not require comput-
ing the entire graph. As a result, we can transform such queries to
simpler, faster computations. To answer the aforementioned query,
one can simply compute one CC, to be even faster, the smallest CC.
For the example graph in Figure 1, we only need to compute the
CC with vertices 12 and 13, which would avoid the more expensive
computation on the majority of the graph.

On the other hand, even for the cases requiring complete compu-
tation, existing methods are suboptimal. For example, the current
method for BiCC computation takes every vertex as the root and
runs breadth-first search (BFS) to find whether the root’s parent is
an articulation point (AP). Unfortunately, most (up to 99%) of these
BFSes will not find any AP (discussed in Section 4). One can see that
there are only two APs among all the 14 vertices for the example
graph in Figure 1. In this work, we will identify and eliminate such
inefficiency to dramatically increase the algorithm performance.

Third, existing systems fail to take advantage of the heteroge-
neous tasks, resulting in low computation parallelism. Naturally, the
tasks of connectivity algorithms share the same irregular property
when running on real-world graphs. That is, a few tasks compute
the majority of vertices and edges in the graph, while the remaining
tasks consist of a large number of small connected components. One
can get a glimpse of such phenomenon from Figure 1. In each XCC
case, there are always one big XCC with several small ones. Such
power-law task distribution would require a good parallel strategy
in order to increase the system utilization and performance.

1.2 Contribution

In this work, we have designed an adaptive parallel computation
framework, Aqila, that covers a wide range of different highly
optimized graph connectivity algorithms. As shown in Figure 2,

Query
transformation

(§3)

Complete computation

Partial
computation

Largest XCC
Small XCC
AP/Bridge Query: Is the

graph connected?

Result
Workload
reduction

(§4)

Adaptive
parallel

computation
(§5)

Trim
Single parent
only (SPO)

Adaptive
parallel

Enhanced BFS

Figure 2: The framework of Aqila.

it takes a graph and the query as inputs, and applies three main
techniques:

Query Transformation. Aqila transforms the computation
queries if possible. In particular, we classify the queries into four
categories, (1) complete computation in addition to three partial
computation types, i.e., (2) computing the largest XCC, (3) com-
puting small XCCs, and (4) computing AP and bridge. For each
category, Aqila utilizes various strategies to speed up the com-
putation. As a result, Aqila is able to significantly improve the
performance by up to three orders of magnitude compared with
the current strategies.

Workload Reduction. Aqila further reduces the workload
with trim and single parent only (SPO) techniques. The trim tech-
nique is generic to all the connectivity algorithms by removing
specific subgraph patterns. Trim is able to significantly reduce the
workload by up to 21%. For the BiCC and BgCC queries that may
need to run a large number (up to vertex count) of BFSes, Aqila
applies the SPO technique to remove the unnecessary BFSes that
would not lead to any BiCC or BgCC. As a result, SPO is able to
further reduce the number of BFSes by up to 77%. Together, the
two techniques are able to reduce up to 98% workloads.

Adaptive Parallel Computation. Aqila adaptively applies
BFS for the few large tasks, and label propagation and concur-
rent BFS for the large number of small tasks. In contrast, current
methods directly apply a single method (either BFS, depth-first
search, or label propagation) to compute the connectivity algo-
rithms [5, 23, 44]. Noticing that the few large tasks take the ma-
jority of the run time, we further enhance the parallel BFS with
multi-pivot and relaxed synchronization techniques. In the end,
such adaptive parallel strategy is able to achieve 6.7× speedup on
average for different connectivity algorithms, including BiCC and
BgCC which are not supported in many existing systems.

Evaluation.We have implemented Aqila1 and compared with
ten related systems, including four popular graph computation sys-
tems, i.e., Galois [37], X-Stream [39], GraphChi [32], and Ligra [42],
four implementations for specific connectivity problems, i.e., Multi-
step for CC and SCC [45], iSpan for SCC [27], Slota for BiCC [44],
and Hong’s SCC method [23], and two serial implementations,
i.e., DFS-based, and the boost graph library [43]. We have tested
eleven different graphs, including nine real-world graphs and two
synthetic graphs. Our evaluation shows that Aqila is able to sig-
nificantly improve the performance on average by 1.1×, 3.7×, 13×,
21×, 53×, 264×, 364×, 1, 369×, 45×, and 255× compared to iSpan,
Hong’s SCC, Multistep, Slota’s BiCC, Galois, Ligra, GraphChi, X-
Stream, DFS, and Boost, respectively. Specifically, Aqila is able to
outperform the state-of-the-art method for each XCC on average
1The source code of Aqila is available at https://github.com/iHeartGraph/Aquila

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

150

https://github.com/iHeartGraph/Aquila

(f) Label initialization (g) First iteration of label propagation

0

4
5

8

1

9

76

2 3

12 13

(e) End of CC computation
(each shaded area is a CC)

(a) An example graph
with pivot vertex 0

(b) BFS tree, the
identified CC

Label propagation

BFS for CC computation

0

4
5

8

1

9

76

2 3

11

12 1310

0

0
0

4

1

5
5

2

9

5

2 2

12 12

7

2 3

12 13

4 5

0

91 108 6

11

0

4
5

1

76

8

2 3

9

11

12 1310

(c) Start the second BFS
on the remaining graph

12 13

(d) Repeat with
the third BFS

0

0
0

0

0

0
0

2

5

0

2 2

12 12

0

0
0

0

0

0
0

2

0

0

2 2

12 12

(h) Second iteration (i) Third iteration

11

10

0 1 2 … 11 12 13 3 4 5 6 7 8 9 10 11 13 1 6 8 9 10 11Frontier queue

level: 0

level: 1

level: 2

level: 3

Figure 3: CC computation with BFS and label propagation. Given an example graph in (a), the BFS-based solution runs the first

BFS from pivot vertex 0 in (b), the second BFS from pivot vertex 2 in (c), and the third one from pivot vertex 12 in (d). The final

CC computation result is shown in (e). Label propagation method initializes all the vertices with their own labels in (f), and

runs three iterations from (g) to (i), and gets the final CC result shown in (e).

by 5.9×, 1.1×, 20.7×, and 9.4×, for (W)CC, SCC, BiCC, and BgCC,
respectively.

Comparison.Aqila is different from prior works in several as-
pects. First, unlike the traditional graph frameworks [32, 37, 39, 42]
that aim to support different graph algorithms, Aqila is a unique
framework that focuses on a variety of graph connectivity algo-
rithms. Second, Aqila not only optimizes the complete computa-
tion for connectivity algorithms, but also identifies the frequently
asked queries that can be quickly answered with partial computa-
tion. To the best of our knowledge, Aqila is the first work that
provides such partial computation for connectivity queries. Third,
although some techniques such as trim have been used in several
works [23, 27, 45], they are limited to several connectivity problems,
e.g., CC and SCC. In this paper, Aqila extends those techniques as
well as designs new ones (e.g., single parent only in Section 4, multi-
pivot sampling and concurrent BFS in Section 5) for additional
connectivity algorithms, especially BiCC and BgCC.

Paper Organization. The rest of paper is organized as follows.
Section 2 presents the background. Section 3 discusses the partial
computation, and Section 4 describes workload reduction. Section 5
presents adaptive parallel computation. Section 6 evaluates Aqila.
Section 7 discusses the related work, and Section 8 concludes.

2 BACKGROUND

We use G (V ,E) to denote a graph, where V denotes the set of
vertices (nodes) and E is the set of edges.

2.1 Applications

The graph connectivity algorithms are widely used in many appli-
cations, where they not only serve as the fundamental steps for
other graph algorithms, but also are key modules for many applica-
tions. Below, we will discuss five applications in three areas, namely,
graph analytics, pattern recognition, and cybersecurity.

Graph Analytics. (1) Many graph algorithms, such as topolog-
ical sort, and reachability query [12], require a directed acyclic
graph (DAG). A regular directed graph is converted to DAG with
the strongly connected component (SCC) algorithm by representing
each SCC as a super node [52]. (2) Another frequently used graph
algorithm, betweenness centrality (BC), measures the importance
of each node by counting the number of the shortest paths. The
state-of-the-art parallel solution divides the graph into multiple
biconnected components (BiCCs) by identifying the articulation
points, computes the BC for each BiCC, and merges the values [50].
This is motivated by the fact that a path crossing two BiCCs must
pass the AP between them.

Pattern Recognition. (3) In computer vision, the connected
component is used to label all the connected pixels as one object,
which is known as the connected-component labeling [22].

Cybersecurity. (4) In spamming botnet detection, an effective
method, BotGraph [53], constructs a user-to-user relationship graph
to model the spamming attacks targeting the major web email
providers. They find that the botnet controlled accounts usually
form a large CCwhile the normal users form a number of small CCs.
(5) The suspicious network activities can be mined from the DNS
query graph [28], which is a directed graph. The SCC is used to
identify the failed DNS graph, which is more likely to be malicious.
Other security applications can be found in malware detection [25],
malicious domain detection [51], and vulnerability detection [16].

2.2 Graph Connectivity Computation

There are two main parallel processing strategies for graph con-
nectivity computation, as shown in Figure 3. First, breadth-first
search (BFS), due to its easy parallelism design, serves as the core
technique for many existing graph connectivity computation meth-
ods [23, 44, 45]. BFS starts from a selected root vertex, a.k.a, pivot
vertex, which is vertex 0 in Figure 3(a). Later, it constructs the BFS

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

151

tree where all the vertices belonging to the same CC are visited
as shown in Figure 3(b). To find all the CCs, one needs to run BFS
repeatedly till all the vertices are assigned to CCs as shown in
Figure 3(c)(d)(e).

A recentwork designs a direction-optimizing BFS, which switches
between conventional top-down traversal and the newly designed
bottom-up traversal [3]. The top-down traversal takes the visited
vertices from the previous level as the frontier queue, inspects its
neighbors, and marks the unvisited neighbor vertices as visited. Re-
versely, the bottom-up traversal takes the unvisited vertices as the
frontier queue, inspects the neighbors, and terminates the inspec-
tion early if any neighbor is found to be visited from the previous
level. The bottom-up method benefits from the early termination
design, and shares different workload (frontier queue) with top-
down. Thus, an efficient BFS design usually starts from top-down,
switches to bottom-up, and switches back to top-down. The switch
is dependent on the amount of the workload.

On the other hand, label propagation is another parallel algo-
rithm for graph connectivity [44, 45]. Its frontier queue includes the
vertices that are updated in the previous level. Initially, it assigns
every vertex a label (vertex id) and all the vertices are in the fron-
tier queue shown in Figure 3(f). Later, it scans the frontier queue
and inspects the neighbors of each vertex. If the neighbor label is
higher (or lower), it will propagate its label to the neighbor (or take
the neighbor label to itself). The frontier queue is shrank to the
newly updated vertices. Iteratively, the algorithm will stop if the
frontier queue becomes empty. For the example, the first iteration
is shown in Figure 3(g), and the frontier queue after the first itera-
tion becomes {3–11, 13} as shown in Figure 3(h). After two more
iterations, the propagation converges and the final result is shown
in Figure 3(e).

3 QUERY TRANSFORMATION

Given a query, Aqila will analyze and classify it into a specific
category, and make the appropriate computation strategy. Below,
we will discuss the categories and computation strategies.

Complete computation is the conventional XCC computation
strategy. The queries in this category include howmanyXCCs, what
is the histogram, any query that does not fall into other categories.
In this case, Aqila performs the complete computation with our
workload reduction and adaptive parallel computation techniques.

Partial Computation of the Largest XCC. The largest XCC
preserves the richest information, which makes it the most inter-
esting XCC among all. For example, in the email user relationship
graph, the security expert usually investigates the largest CC for
potential botnet controlled malicious accounts, while the small CCs
contain the normal users [53]. The queries targeting the largest
XCC are classified into this category, including what is the largest
CC, how big is the largest CC, and whether a specific vertex is in
the largest XCC.

To identify the largest XCC, one needs to not only find it, but also
make sure the others are smaller. Previous works turn to complete
computation. Differently, Aqila firstly computes the largest XCC
by heuristically selecting a vertex inside it based on vertex degree,
which works for most real-world graphs [45]. To make sure it is
the largest, we will compare its size with the remaining graph. If it

0

4
5

8

1

9

6

11

10

12 13

AP: {5, 9}
Bridge: {1-5,
9-11, 12-13}

Query 1: Compute
largest CC

Query 2: Compute
small CC

Query 3: Compute
AP/Bridge

The running example graph

0

4
5

8

1

9

76

2 3

11

12 1310

Figure 4: Examples of partial query transformation.

is smaller, Aqila will use the fast workload reduction techniques
to identify the massive small XCCs. If the remaining graph is still
greater, Aqila will do the complete computation. For the example
graph in Figure 4, Aqila will find the largest CC by choosing
vertex 5 as pivot and terminate the computation early as the found
CC is greater than the remaining. In this example, Aqila saves
the computation for vertices {2, 3, 7, 12, 13}.

Partial Computation of Small XCC. A typical query that can
be answered with small XCC computation is whether a graph is
connected. Such a query usually serves as the prerequisite checking
to help make smart decisions for further computation. For exam-
ple, the community detection algorithm only needs to work on a
connected graph since the vertices in a community are densely
connected internally than the rest of the graph [2]. Obviously, the
vertices in different CCs should exist in different communities. One
can use this query to decide whether they should further split the
graph into CCs or directly compute the communities.

To answer such queries with existing graph systems, one needs
to do a complete computation and later checks whether the number
of XCCs equals to one [32, 37]. To simplify the computation, some
methods would select an arbitrary pivot, find the XCC containing
this pivot, and check whether the XCC size equals to the graph
size [21]. Note that, the largest XCC contains the majority of the
vertices, which makes such a strategy often compute the largest
XCC. Differently, Aqila firstly checks whether any vertex can be
trimmed and terminates when one is found. Otherwise, Aqila
randomly selects a vertex and computes the XCC with our newly
designed techniques. For the example graph in Figure 4, Aqila
can quickly answer the query by trimming vertices {12, 13}.

Partial Computation of AP and Bridge. Besides BiCC and
BgCC, the APs and bridges are of interests to many applications
because they reveal the critical vertices and edges [50]. For the
example graph in Figure 4, the APs are {5, 9}, and the bridges are
{1-5, 9-11, 12-13}. They are “must” passing vertices and edges in
that CC with any graph traversal methods, i.e., DFS, or BFS. In a
computer network, the APs and bridges are usually critical as they
can lead to the serious single point failures.

In the computation of BiCC, one needs to not only figure out
what vertices are APs, but also recursively identify the BiCCs in-
duced from theAPs. The similar case happens for bridges. To answer
such queries faster, we only compute the APs and bridges. Conven-
tional methods are DFS-based, which is usually serial since DFS
is hard to parallelize [38]. A recent work uses parallel BFS for AP,

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

152

while is limited to run too many BFSes. As DFS-based solution only
needs to run DFS once with the workload equalling to the graph
size, the parallel BFS solution may not be able to outperform it
for all the graphs. In our test, the DFS solution is faster for 4 out
of 11 tested graphs. Differently, we leverage our newly designed
workload reduction techniques to remove a large amount of BFSes,
up to 98%. For the remaining BFSes, we will leverage the adaptive
computation strategy to fast compute them.

4 WORKLOAD REDUCTION

Our workload reduction strategy includes two techniques, single
parent only (SPO) and trim.

Single parent only (SPO) is designed for BiCC and BgCC to
significantly reduce the fairly large number of BFSes, which could
be up to |V |. We will elaborate the BiCC computation process to
explain why |V | BFSes are needed.

The pseudocode of BiCC computation is shown in Algorithm 1.
One builds a BFS tree firstly (line 1, 2). Later, for any vertex v in
the reverse order on the BFS tree, one runs a constrained BFS by
removing its parent vertex p (line 3–5). If it can not reach the same
level of its parent vertex p, then p is an articulation point (AP) since
at least the pivot vertex cannot reachv without p. If an AP is found,
it will mark all the newly visited edges as one BiCC (line 6, 7).

Algorithm 1: bfsBiCC(G, *level, *parent)
1 pivot = selectPivot(G);
2 bfs(G, level, parent);
3 foreach v ∈ reverseBfsOrder(G) do
4 p = parent[v];
5 l = bfsConstrained(G, v, p, level);
6 if l < level[p] then
7 Mark the visited edges as one BiCC;

As one needs to run up to |V | BFSes, we reduce theworkloadwith
the single parent only technique, which is based on the following
two lemmas.

Lemma 1. On the constructed BFS tree, for any non-root vertex p,
after removing vertex p, if any of its children v cannot reach a vertex
at the same level of p, then p is an articulation point. Similarly, after
removing edge <p,v>, if v cannot reach a vertex at the level of p,
then edge <p,v> is a bridge.

Proof. Since a child vertex v cannot reach a vertex at the same
level of p after removing p, that means, v cannot reach the root
vertex. Thus, removing vertex p would at least disconnect the root
vertex and v , which makes vertex p an articulation point. Similarly,
we can prove the bridge. □

Lemma 2. For any non-root vertex p, after removing vertex p, if
a child v can reach a vertex at the same level of p, then p is not an
articulation point from the view of v . Not checking vertex v will not
affect the correctness. Similarly for the bridge.

Proof. Let the reached vertex sharing the same level of p be q,
since v is able to reach q, that means, v is able to reach the root

(a) Direct second parent

0 1

2 3 4

(b) Sibling induced second parent

5 9

6 7 8 10

level: i
level: i+1

Figure 5: Two types of vertices that have second parent.

vertex which is then able to reach all the other vertices except the
children of p. Thus, from vertex v , one cannot tell whether p is
an AP or not. Further, assume there is one child u that cannot be
reached by v , then u cannot reach the root vertex, which means
u cannot reach any vertex at the same level of p. According to
Lemma 1, one can tell p is an AP from the view of u. Thus, not
checking vertex v will not affect the correctness of finding all the
APs. □

From Lemma 2, one can see that checking vertex likev would not
find any AP. Motivated, our SPO technique is designed to quickly
remove such vertices. For a vertex v , its second parent here repre-
sents a vertex at the same level of its parent. In the implementation,
we save the space by simply recording whether a vertex has a single
parent, instead of recording its second parent index. We identify
the single parent vertices after the BFS tree construction instead of
mixing them together, since doing so would cancel out the early
termination benefits in the bottom-up traversal.

Currently, our SPO technique identifies two types of second
parent, direct second parent and sibling induced second parent, as
shown in Figure 5. A vertex has a direct second parent if one of its
neighbors (not parent vertex) has the same level with its parent. An
example is shown in Figure 5(a), the parent of vertex 3 is 0. Assume
there is an edge between vertex 3 and 1 in the original graph, and
vertex 1 shares the same level with 0, then vertex 3 actually has a
second parent. We can prune vertex 3.

On the other hand, vertex has a sibling induced second parent
if one of its neighbors has the same level but different parent. An
example is shown in Figure 5(b). Assume there is an edge between
7 and 8, as they have different parents, this makes both vertices
have second parent. One can find other types of vertices that have a
second parent, for example, after finding a vertex with direct second
parent as shown in Figure 5, if there is an edge between 2 and 3,
then vertex 2 also has a second parent. However, we have tested
these types and found that the cost of computing more complex
types overweights the benefit.

Our SPO technique is able to reduce 74% and 77% workload on
average for BiCC and BgCC, respectively, as shown in Figure 6. The
graph benchmarks are presented in Section 6. Combining together
with trim (discussed next), our workload reduction strategy is able
to reduce 95% and 98% workload on average for BiCC and BgCC,
respectively. We also estimate the reduction upper bound, which is
defined as the number of BFSes that will not find an articulation
point or bridge. One can see that, our workload reduction strategy
gets close to the upper bound, which is 99.6% and 99.7% for BiCC
and BgCC, respectively, as shown in Figure 6.

Trim is designed to quickly remove the trivial XCCs motivated
by the fact that a large number of trivial XCCs exist in real-world

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

153

 0
 20
 40
 60
 80

 100

BD PK LJ WE WL FB TW TM FR RM RD AVG

R
ed

uc
ed

BF
Se

s
(%

)

Trim Trim+SPO Upperbound

(a) BiCC

 0
 20
 40
 60
 80

 100

BD PK LJ WE WL FB TW TM FR RM RD AVG

R
ed

uc
ed

BF
Se

s
(%

)

(b) BgCC

Figure 6: The percentage of reduced BFSes for (a) BiCC and

(b) BgCC.

graphs. Trim is shown to be able to greatly reduce the workload
for CC and SCC [23, 45]. In this work, we further design new trim
techniques for BiCC and BgCC. Together, the trimmed subgraph
patterns are shown in Figure 7.

The subgraph pattern shown in Figure 7(a) is an orphan vertex,
who does not have any connections with other vertices. For CC
and WCC, we further trim a size-2 pattern as shown in Figure 7(b),
where two vertices are connected by one edge without connecting
to any other vertices. For the directed WCC, the edge can be in
either direction, or there can be two edges in each direction. For
SCC, we trim size-1 pattern like vertex 3 shown in Figure 7(c). Such
vertex has either zero indegree or zero outdegree, thus it can not
involve in any other SCCs. Further, we trim size-2 SCC as shown by
vertex 4 and 5. In such pattern, the two vertices mutually point to
each other and their other edges are either all going out or coming
in. In this way, one can make sure that they will not be involved
in other SCCs. For BiCC and BgCC, we further trim the patterns
shown in Figure 7(d). Vertex 7 only connects to vertex 6, which
makes this edge a bridge because vertex 7 cannot connect to other
vertices without this edge, and also makes vertex 7 a BgCC. If
vertex 6 has other edges, it will become an articulation point and
the subgraph involving vertex 6 and 7 is a BiCC because removing
vertex 6 will disconnect vertex 7 and others. If vertex 6 only has
one edge, it will not be an AP but the subgraph is still a BiCC.

On average, trim is able to reduce 21% workload for both BiCC
and BgCC, as shown in Figure 6.

5 ADAPTIVE PARALLEL COMPUTATION

This section will discuss our adaptive parallel computation, includ-
ing irregular tasks for connectivity, adaptive parallel strategy, and
parallel traversal.

5.1 Irregular Tasks for Connectivity

We observe that different connected components share the same
irregular task property for real-world graphs. That is, a few large
XCCs take the majority of the graph whose size is close to the order
of graph size, and the rest is a large number of trivial XCCs whose

0 1 2

(a) Size-1 XCC (b) CC/WCC (c) SCC (d) BiCC/BgCC

76
AP

bridge

3
4 5

Figure 7: Trimpatterns for connectivity algorithms, (a) is for

all XCC, (b) is for (W)CC, (c) is for SCC, and (d) is for BiCC

and BgCC.

count is close to the order of graph size as well. Figure 8 shows such
irregular property for two representative graphs, a social network
graph — Twitter graph (TwitterMpi) with 53 million vertices and
3.2 billion edges, and a web graph —Wikipedia graph (WikiLinkEn)
with 11 million vertices and 517 million edges [31]. The graphs
will also be used in Section 6. One can see that both graphs show
the irregular task property for connectivity algorithms. Taking the
BgCC as an example, one can see that, the Wikipedia graph has
a single large BgCC with 3.6M vertices accounting for 32% of the
graph size, and two BgCCs in one order of magnitude smaller, and
the rest are two orders of magnitude smaller. Especially for the
size-1 BgCCs, its count accounts for 93% of the total BgCCs.

1
10

102
103
104
105
106
107
108

1 10 102103104105106107108109

o

f
C

C
s

of vertices

WikiLinkEn
TwitterMpi

1
10

102
103
104
105
106
107
108

1 10 102103104105106107108109

o

f
S

C
C

s

of vertices

WikiLinkEn
TwitterMpi

1
10

102
103
104
105
106
107
108

1 10 102103104105106107108109

o

f
B

iC
C

s

of edges

WikiLinkEn
TwitterMpi

1
10

102
103
104
105
106
107
108

1 10 102103104105106107108109

o

f
B

g
C

C
s

of vertices

WikiLinkEn
TwitterMpi

Figure 8: The number of XCCs against their sizes, in the or-

der of (W)CC, SCC, BiCC, and BgCC, respectively. BiCC size

is measured by edge count, and the others are measured by

vertex count.

5.2 Adaptive Parallel Strategy

Motivated by the irregular task property, we design an adaptive
parallel strategy. As shown in Figure 9, we firstly classify the task
into large and small tasks. For the large task, we apply the data par-
allel strategy, that is, the enhanced parallel BFS. For the small tasks,
we apply the task parallel strategy, that is, the label propagation
technique for CC and SCC, and the concurrent BFS for BiCC and
BgCC. In the following, we will discuss the details of this adaptive
design.

Data vs. Task Parallel. The data parallel method utilizes all
the computation resources to compute one task at a time, while
the task parallel method computes a number of tasks concurrently.

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

154

Task
classification

Enhanced
parallel BFS

Label propagation
(CC, SCC)

Concurrent BFS
(BiCC, BgCC)

Large task

Small tasks

Data
parallel

Task
parallel

Figure 9: Overview of our adaptive parallel strategy.

Motivated by the irregular task property in XCCs, we apply the data
parallel methods for the large tasks, and the task parallel methods
for the large number of small tasks. Particularly, there is usually
one large task for CC and SCC, while may be several for BiCC and
BgCC. But still, the largest one in BiCC and BgCC is several orders
of magnitude greater than others.

BFS vs. Label Propagation. Parallel BFS method shows the
advantage of quickly finding one specific XCC. However, it is low
efficient for finding many XCCs as it needs to run one BFS for each
XCC and most XCCs are small which will result in the small frontier
queue (often less than the number of available hardware threads)
such that most hardware threads are wasted. Differently, label prop-
agation has the advantage of fully utilizing all the hardware threads,
and is able to identify all the XCCs by running only once. However,
it faces the inflated workload challenge where a vertex may appear
in multiple frontier queues. For the example graph in Figure 3(f),
vertices {6, 8, 9, 10, 11} appear in all the three frontier queues. That
means, one has to inspect their neighbors three times. Note that,
the BFS (conventional top-down) inspects each vertex once. Such
a limitation greatly lowers the performance for the large XCC. To
this end, BFS works better for data parallel, and label propagation
fits for task parallel.

Concurrent BFS can also be used for task parallel if one can
assign a separate BFS to each thread. However, it faces the challenge
of how to select a number of pivots from different tasks so that
no duplicate works are performed. It is difficult for CC and SCC,
while relatively easy for BiCC and BgCC since one needs to take
almost every vertex as a pivot as shown in Algorithm 1. As BFS has
less workload than label propagation, we apply the BFS-based task
parallel method for BiCC and BgCC.

5.3 Enhancement to BFS

After applying the previous optimizations, the BFS-based data par-
allel method for the few large tasks take the majority of the runtime.
We further improve the performance by optimizing the parallel BFS
for the large tasks.

We observe that the graph connectivity computation only re-
quires the connectivity information, where the correct BFS tra-
versals are not required. Particularly, one does not have to run
the BFS from a single pivot and synchronize after each iteration.
Motivated, we design a fast parallel traversal method on top of
the parallel BFS with two techniques, multi-pivot sampling and
adaptive synchronization.

Table 1: Graph benchmarks (Dir, Und are short for directed

and undirected).

Graph Abbr. # # Dir # Und # Largest CC
Nodes Edges Edges CCs Percentage

Baidu BD 2.1M 17.8M 34.0M 15,561 98.4%
Pokec PK 1.6M 30.6M 44.6M 1 100%
Livejournal LJ 4.8M 68.5M 85.7M 1,876 99.9%
WikiEn WE 18.3M 172.2M 253.8M 1,366 99.9%
WikiLinkEn WL 11.2M 340.3M 516.9M 3,061 99.9%
Facebook FB 96.1M 679.7M 1.2B 5 99.9%
TwitterWww TW 41.7M 1.5B 2.4B 1 100%
TwitterMpi TM 52.6M 2.0B 3.2B 29,533 99.9%
Friendster FR 68.3M 2.6B 3.6B 323,276 98.7%
RMAT RM 4M 256M 506.2M 1.9M 52.1%
Random RD 4M 256M 512.0M 1 100%

Multi-pivot sampling will sample multiple pivots so that our
graph traversal will run from multiple roots instead of only one.
Multi-pivot sampling faces two challenges, one is that all the pivots
should belong to the same task, and the other is that this task
should be the single large one. We solve them by firstly selecting
a master pivot, which is the vertex with highest degree (vertex 5
in Figure 3(a)). Such a vertex is shown to be always in the single
large task from our test and recent works for both real-world and
synthetic graphs [27, 45]. Later, we sample a number of interesting
pivots that are connected with the master pivot. In this way, we are
able to sample multiple pivots which belong to the same large task.
Currently, we sample the neighbors of the pivot vertex with the
number equalling to the available hardware threads. Such sampling
is an online process and counted as part of the enhanced BFS.

Adaptive Synchronization. Starting from the selected multi-
pivots, Aqila traverses the graph by adaptively switching be-
tween the conventional synchronization (Sync), asynchronization
(Async), and a recently designed relaxed synchronization (Rsync)
from [27]. At the same time, it switches between the top-down and
bottom-up traversal models. Such a design is proved to not only
reduce the workload but also reduce the number of synchroniza-
tions. Specifically, Aqila starts from Sync top-down, switches
to Rsync bottom-up, and switches back to Async top-down. For
the connectivity computation where the correct BFS levels are not
required, we apply such adaptive synchronization strategies.

6 EXPERIMENT

The experiments are performed on a server with two Intel Xeon
Gold 6126 CPUs, each has 12 cores. The server runs CentOS 7.6
with hyper-threading enabled. All the results are reported with an
average of ten runs.

6.1 Graph Benchmarks

We test Aqila on 11 graphs, including 9 real-world and 2 synthetic
graphs shown in Table 1. The real-world graphs are collected from
the KONECT [31] and SNAP project [33]. There are two popular
graph types, social network and web graph. The synthetic graphs
are generated from two popular graph generators, R-MAT [10]

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

155

Table 2: Runtime (ms) of Aqila and compared works. The hyphen denotes the test cannot complete. The best performance

for each test is highlighted. The real-world graphs are ordered by edge number from left to right.

Alg Method BD PK LJ WE WL FB TW TM FR RM RD Avg. speedup
Boost 951 1,220 2,536 7,478 11,701 93,937 100,383 145,275 231,247 10,253 11,157 359.3
DFS 232 265 666 2,054 3,016 11,236 17,992 23,873 44,611 1,717 2,492 67.1
X-Stream 630 1,259 2,181 64,858 1,115,409 110,845 76,433 28,010 110,845 4,373 7,339 1,547.8
Galois_Async 1,667 431 1,503 14,296 15,292 124,871 53,653 227,345 46,240 13,841 2,851 325.2
Galois_LP 207 203 470 1,525 3,262 8,949 11,117 16,672 20,016 1,875 2,325 52.6

CC GraphChi_LP 8,967 4,730 16,004 75,236 121,280 364,772 402,086 674,599 - 59,610 85,243 12,773.0
GraphChi_UF 36 31 98 409 224 1,823 754 976 - 51 57 31.4
Ligra_LP 420 619 1,006 5,035 11,670 34,690 66,560 79,700 139,600 12,550 7,764 264.0
Ligra_SC 358 475 868 4,240 11,400 33,670 80,270 113,500 172,900 12,040 6,850 281.3
Multistep 41 131 233 333 151 1,001 439 571 1,007 232 116 5.9
Aquila 14 9 27 95 79 285 156 222 410 14 21
Boost 617 1,635 4,121 13,395 14,694 26,562 112,058 124,197 240,553 8,972 17,639 182.7
DFS 542 600 1,457 4,794 7,463 23,940 40,365 49,675 84,901 2,930 5,624 82.8
X-Stream 818 2,215 4,447 118,303 1,138,397 28,900 179,068 189,875 164,021 8,822 14,011 1,191.0

SCC GraphChi 225 242 330 1,513 - - - - - 1,358 1,839 918.0
Multistep 166 87 138 302 270 429 700 2,207 4,447 142 114 3.6
Hong 49 46 121 228 352 1,171 1,670 1,618 - 137 112 3.7
iSpan 22 28 54 120 113 89 603 572 1148 44 48 1.1
Aquila 24 29 50 105 106 85 579 558 957 39 43
Boost 4,854 6,696 13,232 40,112 80,455 260,858 527,819 763,802 761,041 68,739 91,957 222.9
DFS 631 719 1,751 5,753 8,714 28,121 45,049 54,464 91,495 4,376 7,453 22.4

BiCC Slota_LP 555 190 681 7,060 9,136 68,323 44,576 114,529 65,480 4,801 - 22.7
Slota_BFS 1,378 258 621 9,982 13,177 24,942 44,790 76,658 21,962 4,278 2,555 20.7
Aquila 43 25 129 222 346 3,683 1,324 4,808 1,697 168 1,304

BgCC DFS 536 607 1,501 5,145 8,100 26,691 44,153 54,242 92,980 3,041 5,484 9.4
Aquila 195 42 145 315 471 8,096 10,383 5,641 5,880 499 1,969

and GTgraph [1]. The graphs are stored in the commonly used
compressed sparse row (CSR) format [6]. It includes two arrays,
one is the begin position array with the length of |V | + 1, the other
is the adjacent list array with the length of |E |.

Initially, all the graphs are directed. As CC, BiCC, and BgCC
work on the undirected graphs, we convert the directed graphs
to undirected. Specifically, we generate the undirected graph by
creating a reversely directed edge for any two vertices that share
only one directed edge. After the conversion, the undirected graph
shares the same vertex number with the directed one, but less than
twice the edges. The details can be found in Table 1.

6.2 Implementation

We implement Aqila with over 5,000 lines of C++ code by sup-
porting five most popular graph connectivity algorithms, WCC,
SCC, CC, BiCC, and BgCC. Aqila is compiled by GCC (v4.8.5)
with O3 optimization level. We use OpenMP (v3.1) as the multi-
threading library. As WCC and CC share the same computation
process with the only difference in edge direction, we regard CC
to represent both of them. For CC and SCC, Aqila starts with
trim, computes the largest one with the optimized parallel BFS, and
applies the label propagation for the remaining ones. For BiCC and
BgCC, Aqila applies trim, builds a BFS tree for the largest CC,
reduces workload with single parent only technique. Next, Aqila
runs concurrent BFS for the vertices at levels greater than one, and
optimized parallel BFS for the vertices at levels zero and one.

6.3 Compared Works

We compare Aqila with ten related works shown in Table 2.
Among them, Multistep is the state-of-the-art method for CC [45],
iSpan achieves the state-of-the-art performance for SCC [27], and
Slota provides the BiCC implementations with either label prop-
agation or BFS [44]. We also compare with four popular graph
computation systems, Galois [37], X-Stream [39], GraphChi [32],
and Ligra [42]. Further, we comparewith one optimized SCC compu-
tation method, Hong [23]. In addition, we compare with two serial
implementations, the classical DFS-based and the boost graph li-
brary [43]. The compared parallel works are running on our server
with the same number of threads. i.e., 48, except for X-Stream with
32 threads because it requires the thread number to be the power
of two. Note that, we only report the runtime of compared works
and ours without any pre- or post-processing, i.e., graph loading,
graph conversion, or writing to disk.

6.4 Performance of Complete Computation

In this section, we will compare the performance of Aqila with
recent works in terms of complete computation. From Table 2,
we can observe that Aqila is able to outperform all other graph
processing frameworks. Of all the connectivity algorithms, Aqila
is able to significantly improve the performance on average by 1.1×,
3.7×, 13×, 21×, 53×, 264×, 364×, 1, 369×, 45×, and 255× compared to
iSpan, Hong’s SCC,Multistep, Slota’s BiCC, Galois, Ligra, GraphChi,
X-Stream, DFS, and Boost, respectively. For each framework, the
speedup number is calculated by averaging its method with the

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

156

 0

 5

 10

 15

 20

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(a) CC

Trim
Trim+Task
Trim+Task+Enhance

 0
 2
 4
 6
 8

 10

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(b) SCC

Trim
Trim+Task
Trim+Task+Enhance

 0
 10
 20
 30
 40
 50

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(c) BiCC

Trm
Trim+SPO
Trim+SPO+Task
Trim+SPO+Task+Enhance

 0
 2
 4
 6
 8

 10

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(d) BgCC

Trim
Trim+SPO
Trim+SPO+Task
Trim+SPO+Task+Enhance

Figure 10: Benefits of the newly designed techniques for (a) CC, (b) SCC, (c) BiCC, and (d) BgCC.

best performance among all supported connectivity algorithms. For
example, the speedup for GraphChi is calculated with its union find
solution (GraphChi_UF) for CC and the method for SCC.

For CC computation, Aqila outperforms Multistep, Galois_LP,
Galois_Async, GraphChi_UF, GraphChi_LP, Ligra_LP, Ligra_SC,
X-Stream, DFS, and Boost by 5.9×, 53×, 325×, 31×, 12, 773×, 264×,
281×, 1, 548×, 67×, and 359× speedup, respectively. We compare
with two fastest methods from Galois, the label propagation based
Galois_LP, and asynchronous union find based Galois_Async. For
GraphChi, we compare with its implementations using label prop-
agation (GraphChi_LP) and union find (GraphChi_UF). For Ligra,
we compare with its implementations using label propagation
(Ligra_LP) and short-cut label propagation (Ligra_SC), which is
an optimized label propagation method from [46].

The speedup comes from both our workload reduction and adap-
tive task computation strategies. Interestingly, for the graphs PK,
TW, and RD, which only have one CC, the speedup shows the effec-
tiveness of our enhanced parallel BFS for the large task. Also, the
best union find-based solution, i.e., GraphChi_UF, performs better
than the best label propagation solution, i.e., Multistep, for small
graphs (BD, PK, LJ, RM, RD), while performs worse for large graphs
(from WE to FR). The reason is that the atomic operations in union
find solutions are costly as the number of conflicts increases when
graph becomes larger.

For SCC, Aqila achieves 1.1×, 3.7×, 3.6×, 918×, 1, 191×, 83×,
and 183× speedup over iSpan, Hong,Multistep, GraphChi, X-Stream,
DFS, and Boost, respectively. We observe that iSpan achieves better
performance for graphs BD and PK. The graph BD has a largest
SCC accounting for only 28% vertices and most of the rest are small
SCCs (≤ 40). Although Aqila is able to outperform iSpan for the
largest SCC computation, iSpan benefits from its optimized trim
design for the small SCCs. Although the graph PK has 80% vertices
in the largest SCC, the graph itself is small which offsets the benefits
of our adaptive computation strategies.

The two parallel graph computation frameworks, X-Stream and
GraphChi are not fast enough because they only apply the forward-
backward algorithms without any other techniques, e.g., trim. Such
an implementation is not efficient towards a graph with many SCCs,
especially when there are a large number of trimmable SCCs.

For BiCC, Aqila achieves more than 20× speedup over Slota,
DFS, and Boost. We compare with two implementations from Slota,
label propagation-, and BFS-based. Although they share similar
average performance, one can see that the label propagationmethod
outperforms BFS for the small graph and BFS is better for large
ones. We also observe that Slota’s implementation gets similar
performance with the classical DFS-based solution due to its heavy
workload, up to |V | BFSes. Aqila avoids such drawback by greatly
reducing theworkloadwith our newly designedworkload reduction
technique.

For BgCC, we only compare with DFS as we are not able to
find any available parallel implementations. Aqila achieves 9.4×
speedup over DFS. We notice that Aqila achieves better perfor-
mance especially for the large graphs. For the largest graph, FR,
which has 3.6 billion edges, Aqila can get all the BgCCs in 6
seconds, while the DFS solution needs 93 seconds.

6.5 Technique Benefits for Complete

Computation

Figure 10 presents the speedup of using our newly designed tech-
niques over the baseline method, which is parallel BFS-based for
CC, SCC, BiCC, and BgCC. For the workload reduction techniques,
trim brings 1.2× speedup, and single parent only (SPO) brings 1.4×
speedup on average. Particularly, trim brings 1.1×, 1.6×, 1.1×, and
1.2× speedup for CC, SCC, BiCC, and BgCC, respectively. Interest-
ingly, trim achieves up to 1, 318× speedup for CC computation on
RM graph. RM has up to 1.9 million trivial CCs which will greatly
benefit from the trim technique. We omit this extreme speedup in
the average speedup calculation. The SPO technique is able to bring
another 1.2× and 1.9× speedup for BiCC and BgCC, respectively.

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

157

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 4 8 16 32 64

Sp
ee

du
p

(a) CC

TW
TM
FR
AVG

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8 16 32 64

Sp
ee

du
p

(b) SCC

TW
TM
FR
AVG

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 4 8 16 32 64

Sp
ee

du
p

(c) BiCC

TW
TM
FR
AVG

 0
 2
 4
 6
 8

 10

 1 2 4 8 16 32 64

Sp
ee

du
p

(d) BgCC

TW
TM
FR
AVG

Figure 11: The scalability of Aqila against thread count

(shown in x-axis) for the three largest graphs (TW, TM, FR)

and the average of all the eleven graphs. (a) CC, (b) SCC, (c)

BiCC, and (d) BgCC.

Workload reduction achieves the highest speedup, 4.2×, for BgCC
computation on graph WE. For this graph, the two techniques are
able to reduce the workload (number of BFSes) by 99.9%, which is
the highest among all.

For the adaptive parallel computation techniques, the adaptive
parallel strategy achieves 2.3×, 1.8×, 13.2×, and 1.5× speedup for
CC, SCC, BiCC, and BgCC, respectively. The enhanced parallel BFS
technique brings 2.8×, 2.6×, 5.7×, and 1.5× speedup for CC, SCC,
BiCC, and BgCC, respectively. Together, the two adaptive parallel
techniques bring 6.7× speedup on average. Particularly, they bring
up to 25× speedup for BiCC computation on graph WE because it
shows obvious irregular task distribution.

6.6 Scalability

This sections studies the scalability of Aqila against different
number of running threads. We present the scalability results for
the three largest graphs (TW, TM, FR) and the average of all the
eleven graphs in Figure 11. One can see that, Aqila shows stable
scalability when increasing the thread count for both large graphs
and on average. Compared with the single thread implementation,
Aqila with 64 threads is able to get 9.4×, 12.9×, 9.5×, and 8.4×
speedup on average for CC, SCC, BiCC, and BgCC, respectively. For
the largest graph FR, Aqila is able to achieve 12.7×, 13.8×, 11.5×,
and 8.6× speedup for CC, SCC, BiCC, and BgCC, respectively.

6.7 Performance of Partial Computation

Queries

This section presents the performance of computing the queries
that can be answered with partial computation in terms of small
XCC, largest XCC, AP, and Bridge.

Small XCC. For the queries in this category, we compare our
strategy with two commonly used strategies in current works, i.e.,
complete computation and selecting an arbitrary pivot. We use
Aqila as the complete computation baseline, which outperforms

 1
 4

 16
 64

 256
 1024
 4096

 16384

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(lo
g

sc
al

e) CC SCC BiCC BgCC

(a) Complete computation.

 1
 4

 16
 64

 256
 1024

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(lo
g

sc
al

e) CC SCC BiCC BgCC

(b) Selecting an arbitrary pivot.

Figure 12: Speedup of small XCC computation over (a) com-

plete computation, and (b) selecting an arbitrary pivot.

state-of-the-art works as shown previously. We implement the se-
lecting an arbitrary pivot strategy with the optimized techniques
from Aqila by randomly selecting a pivot, finding the XCC in-
duced from this pivot, and terminating early when one is found.

The speedup of our strategy over complete computation is shown
in Figure 12(a). On average, our strategy is able to get 6.8×, 8.4×,
132×, and 2, 137× speedup for CC, SCC, BiCC, and BgCC, respec-
tively. Our strategy significantly improves the performance for most
graphs, and gets similar performance with complete computation
even for the worst case graphs. For CC, our performance is similar
with complete computation on graphs PK, TW, and RD as they only
have one CC. For BgCC, the synthetic graph RD has only one BgCC,
which makes our performance similar with complete computation.

The speedup of our strategy over selecting an arbitrary pivot is
shown in Figure 12(b). On average, ours is able to get 6.3×, 84.6×,
62.4×, and 209× speedup for CC, SCC, BiCC, and BgCC, respec-
tively. We observe that most arbitrarily selected pivots end up with
running in the largest XCC. Particularly, all the 110 pivots for CC
fall in the largest CC. For BiCC and BgCC, all the pivots fall in the
largest CC. Although they usually terminate early before comput-
ing the largest BiCC or BgCC, they still have to build the BFS tree
for the largest CC which lowers the performance. For SCC, 65%
pivots fall in the largest one. However, the complete computation is
faster because trim helps to remove 55% vertices before running the
two parallel BFSes. Interestingly, for the synthetic graph RD with
only one CC, the arbitrarily selected pivots get better performance
for CC benefited from the BFS traversals starting from different
root vertices.

Largest XCC. The speedup of finding the largest XCC over
Aqila’s complete computation is shown in Figure 13. Our strategy
achieves 1.2×, 1.1×, 1.03×, and 1.1× speedup over the baseline. For
CC and SCC computation, we are able to find the largest XCC after
trimming and computing the largest XCC. Thus, we benefit from
eliminating the small XCC computation. Differently for BiCC and
BgCC, our solution firstly computes the small XCCs due to the
checking order is from the highest BFS level to the lowest where

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

158

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

CC SCC BiCC BgCC

Figure 13: Speedup of largest XCC over complete computa-

tion of Aqila.

the largest XCC is usually found at the zero or first level. Simply
reversing the checking order would result in wrong XCCs since the
largest one will involve the small ones. However, we still achieve
1.03× and 1.1× speedup for BiCC and BgCC by eliminating some
traversals at the zero and first level.

AP and Bridge. For AP only computation, besides comparing
with Aqila’s complete computation, we also compare with the AP
only computation method from Slota, DFS, and Boost. As shown
in Figure 14(a), on average, Aqila achieves 2.5×, 2.3×, 50×, 43×,
and 423× speedup over Aqila’s complete computation, Slota’s
BFS, Slota’s label propagation, DFS, and Boost, respectively. The
benefit is mainly from workload reduction because one does not
need to check an already identified AP vertex which is different in
BiCC computation. For bridge only computation, we are able to get
12× and 1.3× speedup over DFS and Aqila’s BgCC computation
as shown in Figure 14(b).

7 RELATEDWORK

In this section, we will discuss the works related to Aqila in terms
of computing CC, SCC, BiCC, and BgCC.

The study of connected component (CC) starts from a serial
DFS-based solution by Hopcroft and Tarjan [24]. It has linear time
complexity and is used in several graph libraries as the serial solu-
tion, including Boost [43], and Galois [29]. Shiloach et al. proposed
the first parallel CC algorithm [41]. It uses the union-find data
structure with hooking and pointer jumping, where hooking is the
union operation and the pointer jumping is a path compression
technique to reduce the length of the path. The Galois graph library
provides up to seven parallel CPU implementations, including both
union-find based and label propagation based [29]. Ligra [42] has
two implementations, label propagation and parallel BFS based.
GraphChi [32] implements two parallel CC algorithm, label prop-
agation and union find based. Later, Multistep fuses the parallel
BFS, label propagation, and serial DFS-based Tarjan algorithm for
shared-memory computation with a significant improvement [45].

Strongly connected component (SCC) is firstly studied by Tar-
jan with DFS-based solution [47]. Although a recent DFS-based
work gets good performance for on-the-fly SCC detection [5], most
parallel algorithms choose BFS for better parallelism [15]. Fleis-
cher et al. first propose the parallel forward backward (FW-BW)
algorithm [18]. Starting from a pivot vertex, FW-BW algorithms
perform two BFSes, one with out edge and the other with in edge.
The vertices covered in both BFSes belong to the SCC induced from
the pivot vertex. Later, Mclendon et al. propose the trim technique

 1
 4

 16
 64

 256
 1024
 4096

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(lo
g

sc
al

e) Boost DFS Slota_BFS Slota_LP Aquila

(a) AP.

 1
 2
 4
 8

 16
 32

BD PK LJ WE WL FB TW TM FR RM RD AVG

Sp
ee

du
p

(lo
g

sc
al

e) DFS Aquila

(b) Bridge.

Figure 14: Speedup of AP (a) and bridge (b) computation.

motivated by the large number of size-1 SCCs in a graph [36]. Re-
cently, Hong designs the trim-2 technique to fast trim size-2 SCCes
and applies WCC-guided FW-BW algorithm for the small SCCs [23].
Slota et al. design the Multistep method, which applies trim, FW-
BW algorithm, label propagation, and serial Tarjan’s algorithm [45].
iSpan designs a fast spanning tree-based method with a relaxed
synchronization technique for the FW-BW algorithm [27].

Initially, biconnected component (BiCC) and bridgeless con-
nected component (BgCC) are also computed with DFS-based serial
solution [24]. Later, Tarjan and Vishkin design a parallel solution by
constructing an auxiliary graph [48]. Further, Cong and Bader add a
preprocessing step to improve the performance by greatly reducing
the size of the auxiliary graph [13]. Edwards and Vishkin extend
such algorithm to explicit multi-threading many core platform [15].
The SCC-based solution is firstly introduced by Eckstein [14] and
extended to parallel by Tsin [49]. Another direction of computing
BiCC is open ear decomposition-based [35].

8 DISCUSSION AND CONCLUSION

For real-world graphs, the adaptive strategies, i.e., partial computa-
tion, workload reduction, and adaptive parallel computation, are
shown to be effective. It is possible that some of the techniques
may not bring obvious benefits under special cases. Particularly,
on some graphs, the partial computation strategy for some spe-
cific connectivity algorithms may not bring obvious speedup, e.g.,
the largest Aqila in a large graph (FR). If a graph does not have
trimmable patterns, the workload reduction strategy will not work.
However, the real-world graphs usually have such patterns. Also,
some trimmable patterns (the SPO patterns) usually exist as it is
impossible to build a graph that every node is an articulation point.

Currently, Aqila implements five connectivity algorithmswhich
are the most popular among all the connectivity algorithms. Not
limited, one can extend our techniques to other connectivity al-
gorithms, such as k-vertex connectivity and k-edge connectivity
(k > 2). With the optimized connectivity computation, one can also
improve the performance of related applications, such as between-
ness centrality computation, and reachability query computation.

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

159

This work designs Aqila, an adaptive computation framework
for answering queries on graph connectivity. Particularly, given a
graph and the query, Aqila analyzes the query and determines a
fast computation strategy. Aqila further simplifies the workload
by reducing unnecessary tasks with our newly designed single
parent only and trim techniques. Later, Aqila improves the per-
formance with our adaptive parallel computation techniques. The
evaluation on eleven graphs shows that Aqila significantly im-
proves the performance on average by 13×, 53×, 264×, 364×, 1, 369×,
45×, and 255× compared to Multistep, Galois, Ligra, GraphChi, X-
Stream, DFS, and Boost, respectively. Specifically, Aqila is able to
outperform the state-of-the-art methods on average by 5.9×, 1.1×,
20.7×, and 9.4×, for (W)CC, SCC, BiCC, and BgCC, respectively.

ACKNOWLEDGEMENT

The authors would like to thank the anonymousHPDC’20 reviewers
for their valuable suggestions. This work was supported in part by
National Science Foundation CAREER award 1350766 and grants
1618706 and 1717774.

REFERENCES

[1] David A Bader and Kamesh Madduri. 2006. Gtgraph: A synthetic graph generator
suite. (2006).

[2] Seung-Hee Bae and Bill Howe. 2015. GossipMap: A distributed community
detection algorithm for billion-edge directed graphs. Proceedings of SC (2015).

[3] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing
Breadth-First Search. Proceedings of SC (2012).

[4] Bibek Bhattarai, Hang Liu, and H Howie Huang. 2019. Ceci: Compact embedding
cluster index for scalable subgraph matching. Proceedings of SIGMOD (2019).

[5] Vincent Bloemen, Alfons Laarman, and Jaco van de Pol. 2016. Multi-core on-the-
fly SCC decomposition. Proceedings of PPoPP (2016).

[6] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks. Proceedings of SPAA (2009).

[7] Kenneth L Calvert, Matthew B Doar, and EllenWZegura. 1997. Modeling internet
topology. IEEE Communications magazine (1997).

[8] Jian Cao, Qiang Li, Yuede Ji, Yukun He, and Dong Guo. 2016. Detection of
forwarding-based malicious URLs in online social networks. International Journal
of Parallel Programming (2016).

[9] Lili Cao and John Krumm. 2009. From GPS traces to a routable road map. Pro-
ceedings of ACM SIGSPATIAL (2009).

[10] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. Proceedings of ICDM (2004).

[11] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-
entiated graph computation and partitioning on skewed graphs. Proceedings of
EuroSys (2015).

[12] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-Label:
a topological-folding labeling scheme for reachability querying in a large graph.
Proceedings of SIGMOD (2013).

[13] Guojing Cong and David A Bader. 2005. An experimental study of parallel
biconnected components algorithms on symmetric multiprocessors (SMPs). Pro-
ceedings of IPDPS (2005).

[14] DM Eckstein. 1979. BFS and biconnectivity. Technical Report 79-11 (1979).
[15] James A Edwards and Uzi Vishkin. 2012. Better speedups using simpler par-

allel programming for graph connectivity and biconnectivity. Proceedings of
International Workshop on PMAM (2012).

[16] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. Proceedings
of NDSS (2016).

[17] Shimon Even and R Endre Tarjan. 1975. Network flow and testing graph connec-
tivity. SIAM journal on computing (1975).

[18] Lisa K Fleischer, Bruce Hendrickson, and Ali Pınar. 2000. On identifying strongly
connected components in parallel. Proceedings of IPDPS (2000).

[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs.
Proceedings of OSDI (2012).

[20] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. Graphx: Graph processing in a distributed dataflow

framework. Proceedings of OSDI (2014).
[21] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network struc-

ture, dynamics, and function using NetworkX. (2008).
[22] Lifeng He, Yuyan Chao, Kenji Suzuki, and Kesheng Wu. 2009. Fast connected-

component labeling. Pattern recognition (2009).
[23] Sungpack Hong, Nicole C Rodia, and Kunle Olukotun. 2013. On fast parallel detec-

tion of strongly connected components (SCC) in small-world graphs. Proceedings
of SC (2013).

[24] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient algorithms for
graph manipulation. Commun. ACM (1973).

[25] Yuede Ji, Benjamin Bowman, and H Howie Huang. 2019. Securing malware
cognitive systems against adversarial attacks. Proceedings of ICCC (2019).

[26] Yuede Ji, Yukun He, Xinyang Jiang, Jian Cao, and Qiang Li. 2016. Combating the
evasion mechanisms of social bots. Computers & Security (2016).

[27] Yuede Ji, Hang Liu, and H Howie Huang. 2018. iSpan: Parallel Identification of
Strongly Connected Components with Spanning Trees. Proceedings of SC (2018).

[28] Nan Jiang et al. 2010. Identifying suspicious activities through dns failure graph
analysis. Proceedings of ICNP (2010).

[29] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L Paul Chew. 2007. Optimistic parallelism requires abstractions. Pro-
ceedings of PPoPP (2007).

[30] Pradeep Kumar and H Howie Huang. 2019. GraphOne: A data store for real-time
analytics on evolving graphs. Proceedings of FAST (2019).

[31] Jérôme Kunegis. 2013. Konect: the koblenz network collection. Proceedings of
the International Conference on World Wide Web (2013).

[32] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC . Proceedings of OSDI (2012).

[33] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (2014).

[34] Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph traversal on
GPUs. Proceedings of SC (2015).

[35] Yael Maon, Baruch Schieber, and Uzi Vishkin. 1986. Parallel ear decomposition
search (EDS) and st-numbering in graphs. AegeanWorkshop on Computing (1986).

[36] William Mclendon Iii, Bruce Hendrickson, Steven J Plimpton, and Lawrence
Rauchwerger. 2005. Finding strongly connected components in distributed graphs.
J. Parallel and Distrib. Comput. (2005).

[37] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. Proceedings of SOSP (2013).

[38] John H Reif. 1985. Depth-first search is inherently sequential. Inform. Process.
Lett. (1985).

[39] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. Proceedings of SOSP (2013).

[40] John Scott. 1988. Social network analysis. Sociology (1988).
[41] Yossi Shiloach and Uzi Vishkin. 1980. An O (log n) parallel connectivity algorithm.

(1980).
[42] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. Proceedings of PPoPP (2013).
[43] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. 2002. The boost graph

library: user guide and reference manual. (2002).
[44] George M Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity

algorithms for multicore platforms. Proceedings of HiPC (2014).
[45] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS

and coloring-based parallel algorithms for strongly connected components and
related problems. Proceedings of IPDPS (2014).

[46] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Short-
cutting label propagation for distributed connected components. International
Conference on Web Search and Data Mining (2018).

[47] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing (1972).

[48] Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity
algorithm. SIAM J. Comput. (1985).

[49] Yung H Tsin and Francis Y Chin. 1984. Efficient parallel algorithms for a class of
graph theoretic problems. SIAM J. Comput. (1984).

[50] Lei Wang, Fan Yang, Liangji Zhuang, Huimin Cui, Fang Lv, and Xiaobing Feng.
2016. Articulation points guided redundancy elimination for betweenness cen-
trality. Proceedings of PPoPP (2016).

[51] Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Narasimha Reddy, and
Supranamaya Ranjan. 2010. Detecting algorithmically generated malicious do-
main names. Proceedings of SIGCOMM (2010).

[52] Zhiwei Zhang, Jeffrey Xu Yu, Lu Qin, Lijun Chang, and Xuemin Lin. 2015. I/O
efficient: computing sccs in massive graphs. Proceedings of VLDB (2015).

[53] Yao Zhao, Yinglian Xie, Fang Yu, Qifa Ke, Yuan Yu, Yan Chen, and Eliot Gillum.
2009. BotGraph: Large Scale Spamming Botnet Detection. Proceedings of NSDI
(2009).

Session: Enabling Adaptivity HPDC ’20, June 23–26, 2020, Stockholm, Sweden

160

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background
	2.1 Applications
	2.2 Graph Connectivity Computation

	3 Query Transformation
	4 Workload Reduction
	5 Adaptive Parallel Computation
	5.1 Irregular Tasks for Connectivity
	5.2 Adaptive Parallel Strategy
	5.3 Enhancement to BFS

	6 Experiment
	6.1 Graph Benchmarks
	6.2 Implementation
	6.3 Compared Works
	6.4 Performance of Complete Computation
	6.5 Technique Benefits for Complete Computation
	6.6 Scalability
	6.7 Performance of Partial Computation Queries

	7 Related Work
	8 Discussion and Conclusion
	References

