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Cognitive System

• A self-learning system leverages a combination of intelligent 
techniques, such as machine learning (ML), and data mining.

• It has made breakthrough performance in many applications, such as 
image processing, self-driving vehicles, and cybersecurity.
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Adversarial Attack

• Adversarial attacks try to cause the machine learning methods to 
misbehave or leak sensitive model information.

• The cognitive systems are vulnerable to adversarial attacks. 

3 Picture credits to “Vaccinating machine learning against attacks” 



Malware Cognitive Systems

• Applying cognitive intelligence to malware detection

• Gained great popularity, which has been used in Sparkcognition, Cisco, IBM, 
Cybereason.

• Such systems are vulnerable to adversarial attacks.
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Background: Malware
• Malware: Malicious Software

• Malicious intent, such as crashing the infected device, stealing user 
information, and launching phishing attacks.

• Malware Types

• Virus, worm, Trojan, botnet, …

• Malware is still a major cyber threat
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Background: Adversarial Attack
• Data poisoning attack
• Training phase
• Add “poisoned” training data to confuse the inference result.

• Evasion attack
• Testing phase
• Test multiple data to identify the network gradients, thus perform targeted 

attack. 

• Exploratory attack
• Testing phase
• Aim to extract knowledge from a trained model instead of fooling it
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Problem Definition
• Task Definition
• Aim to defend evasion attacks for malware classification

• Five malware classes, no benign software

• Threat Model
1. The adversarial attacks can only happen at the testing stage.

2. The adversaries may have knowledge of the training dataset, but are not allowed to 
modify it.

3. The adversaries have no knowledge of the trained model (architecture, parameters).

4. The adversaries only aim at degrading the performance in terms of accuracy metrics and 
are not attacking any confidentiality or privacy issues. 
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DeepArmour Overview
• Feature Reconstruction

• Term frequency-inverse document frequency (TFIDF)

• Attributed raph

• Weighted Voting

• Random forest, Multi-layer perceptron, and graph neural network 

• Adversarial Retraining
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Malware Dataset
• Malware execution trace dataset [AAAI-19 AICS Challenge]

• 12,536 malware in five categories: Virus, Worm, Trojan, Packed Malware, 
AdWare

• Anonymized bag-of-n-grams (n = 1, 2, 3)

• Original trace is not available in this challenge
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Feature Reconstruction
• Term Frequency-Inverse Document Frequency (TFIDF)

• A weighting factor intends to show the importance of a word to a 
document in large corpus

• API à word, malware à document

• Attributed Graph

• API à node, bi-gram à edge

• Node attribution: [node_id (1-hot), node_freq, avg_out_edge_freq, 
avg_in_edge_freq]
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Weighted Voting
• Motivation

• Most adversarial attacks are targeting one or one type of machine learning 
method.

• Three machine learning methods

• Random forest (RF)

• Multi-layer perceptron (MLP)

• Structure2vec
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Adversarial Retraining
• One of the most effective adversarial countermeasures

• We generate adversarial samples on top of the training dataset 

• MLP targeted attack

• Manipulate the inputs to a MLP model to produce incorrect output

• Fast gradient sign method
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Experiment
• Experiment Setting

• Intel Xeon E5-2620 (2.00 GHz) CPU, 12 cores with 128 GB of main 
memory.

• One Nvidia Tesla K40c GPU 

• Machine learning library, scikit-learn (version 0.19.1)

• Neural network framework, TensorFlow (version 1.11.0)

• Performance Metrics

• Accuracy

• Weighted & Macro F1
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Malware Detection on Normal Dataset
• 10-fold cross validation

• Methods
• Support vector machine (SVM)
• Decision tree (DT)
• K-nearest neighbors (KNN)
• Random forest (RF)
• Multi-layer perceptron (MLP)
• Structure2vec (GL)

• Performance
• Accuracy: 99%
• Weighted F1: 0.99
• Macro F1: 0.98
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Against Adversarial Attacks
• Accuracy after the attack

• MLP drops from 98% to 12%

• Everyone drops to ~60%

• Our approach achieves the 
best weighted/macro F1 of 0.8 
vs. others 0.5/0.2
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Adversarial Retraining
• Retraining with adversarial samples

• 10% retraining improves accuracy from 65% to 84%

• 50% retraining achieves 90% accuracy 
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Conclusion
• Takeaways

• DeepArmour is a robust malware classification system, which is able to defend 
evasion adversarial attacks.

• Malware detection & adversarial defenses are arms race, which needs to be 
evolved all the time.

• Future Works

• Investigate other adversarial attacks

• Focus on more malware types
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Thank You

The source code and data will soon be released at our repository at 
github.com/iHeartGraph/
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Performance of Different Techniques
• TFIDF

• MLP: accuracy improves from 
12% to 68%

• Retraining
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Parameter Study
• Can put in backup
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