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Cognitive System

* A self-learning system leverages a combination of intelligent
techniques, such as machine learning (ML), and data mining.

* It has made breakthrough performance in many applications, such as
image processing, self-driving vehicles, and cybersecurity.
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Adversarial Attack

* Adversarial attacks try to cause the machine learning methods to
misbehave or leak sensitive model information.

* The cognitive systems are vulnerable to adversarial attacks.
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Malware Cognitive Systems

Applying cognitive intelligence to malware detection

Gained great popularity, which has been used in Sparkcognition, Cisco, IBM,
Cybereason.

Such systems are vulnerable to adversarial attacks.
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Background: Malware
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Background: Adversarial Attack

Data poisoning attack

Training phase
Add “poisoned” training data to confuse the inference result.

Evasion attack

Testing phase

Test multiple data to identify the network gradients, thus perform targeted
attack.

Exploratory attack
Testing phase

Aim to extract knowledge from a trained model instead of fooling it
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Problem Definition

Task Definition

Aim to defend evasion attacks for malware classification

Five malware classes, no benign software

Threat Model

The adversarial attacks can only happen at the testing stage.

The adversaries may have knowledge of the training dataset, but are not allowed to
modify it.

The adversaries have no knowledge of the trained model (architecture, parameters).

The adversaries only aim at degrading the performance in terms of accuracy metrics and
are not attacking any confidentiality or privacy issues. GW
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DeepArmour Overview

* Feature Reconstruction

* Term frequency-inverse document frequency (TFIDF)

* Attributed raph
* Weighted Voting
* Random forest, Multi-layer perceptron, and graph neural network

* Adversarial Retraining
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Malware Dataset

Malware execution trace dataset [AAAI-19 AICS Challenge]

12,536 malware in five categories: Virus, Worm, Trojan, Packed Malware,
AdWare

Anonymized bag-of-n-grams (n = |, 2, 3)
Orriginal trace is not available in this challenge
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Feature Reconstruction

Term Frequency-Inverse Document Frequency (TFIDF)

A weighting factor intends to show the importance of a word to a
document in large corpus

APl 2 word, malware =2 document
Attributed Graph
APl = node, bi-gram = edge

Node attribution: [node_id (l-hot), node_freq, avg out edge freq,
avg_in_edge freq]
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Weighted Voting

Motivation

Most adversarial attacks are targeting one or one type of machine learning
method.

Three machine learning methods
Random forest (RF)
Multi-layer perceptron (MLP)

Structure2vec
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Adversarial Retraining

One of the most effective adversarial countermeasures
We generate adversarial samples on top of the training dataset
MLP targeted attack
Manipulate the inputs to a MLP model to produce incorrect output

Fast gradient sigh method
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Experiment

Experiment Setting

Intel Xeon E5-2620 (2.00 GHz) CPU, |2 cores with 128 GB of main
memory.

One Nyvidia Tesla K40c GPU
Machine learning library, scikit-learn (version 0.19.1)

Neural network framework, TensorFlow (version |.11.0)

Performance Metrics

Accuracy
Weighted & Macro Fl
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Malware Detection on Normal Dataset

| 0-fold cross validation

Methods

Support vector machine (SVM) | | | _ |
. ] e
Decision tree (DT) Accuracy Weight F1 Macro F1
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K-nearest neighbors (KNN)
Random forest (RF)
Multi-layer perceptron (MLP)
Structure2vec (GL)
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Performance
Accuracy: 99%
Weighted Fl: 0.99

Macro Fl: 0.98 GW
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Against Adversarial Attacks

¢ Accuracy after the attack Vius | Worm | Trojan | Packed | Adware | Total
Malware
* MLP drops from 98% to 2% Normal | 11,844 | 11,253 | 771 692 512 | 12,536
malware
* Everyone drops to ~60% Generated | 1,303 | 308 120 11 87 1,929
adversarial
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Adversarial Retraining

* Retraining with adversarial samples

* 10% retraining improves accuracy from 65% to 84%

* 50% retraining achieves 90% accuracy
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Conclusion

Takeaways

DeepArmour is a robust malware classification system, which is able to defend
evasion adversarial attacks.

Malware detection & adversarial defenses are arms race, which needs to be
evolved all the time.

Future Works
Investigate other adversarial attacks

Focus on more malware types
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Thank You

The source code and data will soon be released at our repository at
github.com/iHeartGraph/
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Performance of Different Techniques

- TFIDF

* MLP: accuracy improves from
127 to 68%

* Retraining
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* Can putin backup

Parameter Study

MLP
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