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Abstract—The cognitive systems along with the machine
learning techniques have provided significant improvements for
many applications. However, recent adversarial attacks, such
as data poisoning, evasion attacks, and exploratory attacks,
have shown to be able to either cause the machine learning
methods to misbehave, or leak sensitive model parameters. In
this work, we have devised a prototype of a malware cognitive
system, called DEEPARMOUR, which performs robust malware
classification against adversarial attacks. At the heart of our
method is a voting system with three different machine learning
malware classifiers: random forest, multi-layer perceptron,
and structure2vec. In addition, DEEPARMOUR applies several
adversarial countermeasures, such as feature reconstruction
and adversarial retraining to strengthen the robustness. We
tested DEEPARMOUR on a malware execution trace dataset,
which has 12, 536 malware in five categories. We are able to
achieve 0.989 accuracy with 10-fold cross validation. Further,
to demonstrate the ability of combating adversarial attacks,
we have performed a white-box evasion attack on the dataset
and showed how our system is resilient to such attacks.
Particularly, DEEPARMOUR is able to achieve 0.675 accuracy
for the generated adversarial attacks which are unknown to
the model. After retraining with only 10% adversarial samples,
DEEPARMOUR is able to achieve 0.839 accuracy.
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I. INTRODUCTION

A cognitive system is self-learning by leveraging a com-
bination of intelligent techniques, such as machine learning
(ML), data mining [1]. The cognitive systems along with the
machine learning techniques have achieved great progress in
recent years. They have provided breakthrough performance
across many domains such as image processing [2], self-
driving vehicles [3], and cybersecurity [4].

Recent studies find that many of the cognitive systems
are vulnerable to adversarial attacks [5]. In essence, adver-
sarial attacks try to cause the machine learning methods to
misbehave or leak sensitive model information, and can take
place throughout different stages of learning. In the training
stage, data poisoning attack injects incorrectly or maliciously
labeled samples into the training dataset to make the machine
learning methods learn incorrectly [6]. In the testing stage,
evasion attacks tamper with test data to cause prediction
errors. In addition, exploratory attacks will repeatedly test
the learned model with edge-cases to reveal the decision
boundary [7]. In this paper, we are specifically focusing
on evasion attacks as these are the most common attacks
on machine learning models. Different adversarial defense

techniques have been proposed [8] [9]. However, most of
them are targeting the adversarial attacks in the computer
vision problem [10]. Also, most defending techniques are
only effective for a few attacks which are usually known to
the designer in advance [10].

Malware cognitive systems, which apply cognitive intel-
ligence to malware detection, have gained great popularity
rencently. A security company, Sparkcognition, designs a
cognitive agent to better detect various types of unknown
malware [11]. The network company, Cisco, leverages
cognitive intelligence to better defeat polymorphic mal-
ware [12]. Further, the enterprise cognitive systems (ECS)
have been used by several companies, i.e., IBM [1], Cy-
bereason [13], towards better malware detection. However,
recent studies have shown that existing malware cogni-
tive systems are vulnerable to data poinsoning adversarial
attacks [14]. Motivated, In this work, we explore the
adversarial defense for the malware cognitive system with
the special focus on the unknown adversary. Specifically,
the dataset1 is the bag-of-n-grams [15] extracted from the
malware API call sequence. The adversary will be generated
from the bag-of-n-grams.

To address this problem, we design DEEPARMOUR, a
robust malware classification system against unknown adver-
sarial evasion attacks. DEEPARMOUR consists of three ad-
versarial defense techniques, namely feature reconstruction,
weighted voting, and adversarial retraining. Given the bag-
of-n-grams of a malware, DEEPARMOUR will reconstruct
the features in two ways: term frequency-inverse document
frequency (TFIDF) weighting, as well as a graph represen-
tation. Next, DEEPARMOUR votes on the label via three
classifiers: random forest, multi-layer perceptron (MLP), and
structure2vec. To strengthen the robustness, we automat-
ically generate some targeted adversarial evasion attacks
against DEEPARMOUR and retrain them.

In summary, we make the following contributions.

• We have designed two feature reconstruction methods,
term frequency-inverse document frequency (TFIDF)
weighting, and the attributed graph representation.
TFIDF weights the importance of an API to a malware.
The attributed graph representation provides a new way

1The dataset is from AAAI-19 Workshop on Artificial Intelligence for
Cyber Security (AICS) Challenge problem (http://www-personal.umich.
edu/∼arunesh/AICS2019/index.html).



to clean the perturbations of adversarial samples. When
testing with unknown adversarial attacks, the recon-
structed features greatly increase the performance, i.e.,
the accuracy improves from 0.118 to 0.675, the macro
F1 improves from 0.075 to 0.461, and the weighted F1
improves from 0.155 to 0.665.

• The weighted voting model is built on top of three
classifiers: random forest, multi-layer perceptron, and
structure2vec, each of which uses different learning
strategy as well as different features. As a result,
this model can mitigate the risk of one classifier
being fooled by an adversary by taking the majority
vote across all classifiers. The tests on the unknown
adversarial attacks show the effectiveness of voting.
Particularly, compared with the best single classifier,
structure2vec, the voting improves the accuracy from
0.66 to 0.675, the macro F1 from 0.223 to 0.806, and
the weighted F1 from 0.649 to 0.806.

• We have implemented DEEPARMOUR and tested on
various dataset. Particularly, DEEPARMOUR is able to
achieve 0.989 accuracy, which is the average of 10-
fold cross-validation on the normal malware dataset.
Testing with our generated adversarial samples, which
are unknown to our model, DEEPARMOUR is able
to achieve 0.675 accuracy. By retraining only 10%
adversarial samples, DEEPARMOUR is able to achieve
0.839 accuracy for the remaining adversarial sam-
ples. When retraining with 50% adversarial samples,
DEEPARMOUR can reach 0.904 accuracy.

II. BACKGROUND

In this section, we present the background of adversarial
attack and malware classification.

A. Adversarial Attack

Adversarial attacks against machine learning can be cat-
egorized into the following three types:

Evasion attacks are the most common types of ad-
versarial attack against ML algorithms. An adversary per-
forms evasion attacks by manipulating inputs to a trained
model with the goal of producing incorrect output. There
are many approaches to generating these samples. Typical
approaches perform so-called white-box attacks as the pa-
rameter weights of the machine learning model are known.
This allows an attacker to identify the network gradients and
thus perform targeted manipulation of the inputs to produce
an erroneous output [5] [16].

Data poisoning attack assumes access to the training
phase of the model. An adversary performs such an attack
by contaminating the training data in a certain way to
produce incorrect output at inference time. Typically the
attack scenario involves finding the minimal amount of con-
tamination required to maximize the intended degradation
of the targeted model [17] [6].

Exploratory attacks differ from the previous two as they
are not directly attempting to fool the network in a specific
way, but rather these attacks aim to extract knowledge from a
trained network not explicitly provided by the model owners.
For example, successful adversary attacks have extracted the
models themselves [18], as well as have inferred information
about the training and testing data used to train the model [7]

In the context of malware classification, we focus on the
evasion attacks as it is assumed that our training data is free
of adversarial input, and we are not providing our model
directly to the adversary. Instead, we are provided a set of
training samples with the indication that some of the samples
will be adversarial in nature.

B. Malware Classification

Malware is software with malicious intent such as crash-
ing the infected device, stealing user information, and
launching phishing attacks [19]. Malware classification is
one of the major countermeasures for malware detection. It
includes three different classification tasks. The most basic
approach is a simple binary-class classification between
malware and benign software. After a malware has been
identified, it may be important to determine what strain of
malware this sample belongs to. To accomplish this, one
can do multi-class classification of the malware types, such
as virus, worm, Trojan, and botnet [20]. For each malware
type, one can further classify them into different malware
families [21]. In this project, we are focusing on the malware
classification in terms of malware types.

III. PROBLEM DEFINITION

In this section, we define the task and threat model.

A. Task Definition

This project aims at defending adversarial attacks in the
context of using machine learning for malware classifica-
tion. There are five malware classes: Virus, Worm, Trojan,
Packed Malware, and AdWare. There is no benign software
involved. Each malware is dynamically analyzed on an
Windows virtual machine and the sequence of Windows
API calls is extracted. Further, each sequence is obfuscated
by extracting bag-of-n-grams (n = 1, 2, 3) and each API
is anonymized to an integer number. In other words, the
real API and execution sequences are not provided. We try
to design a robust malware classification system that can
defend adverarial evasion attacks.

B. Threat Model

We define the adversarial threat model as follows: (1) The
adversarial attacks can only happen at the testing stage. That
means, the attacks targeting the training dataset, such as data
poisoning attacks, will not be considered in this project. (2)
The adversaries may have knowledge of our training dataset,
but are not allowed to modify it. Our training dataset is
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Figure 1. The architecture of DEEPARMOUR

exposed to the adversaries and they may analyze it to better
attack our model. (3) The adversaries have no knowledge of
our trained model (architecture, parameters), in other words,
our model is a black-box to them. Although the adversarial
examples we generated are based on our trained model, the
final testing adversarial attacks have no knowledge of our
trained model. (4) The adversaries only aim at degrading
the performance in terms of accuracy metrics and are not
attacking any confidentiality or privacy issues.

IV. OVERVIEW

In this section, we present an overview of DEEPARMOUR
in terms of training and testing, as illustrated in Figure 1.

A. Training Stage
In this stage, DEEPARMOUR automatically learns a

weighted voting malware classifier. Firstly, given the training
dataset in the format of bag-of-n-grams extracted on the
anonymized API execution sequence, DEEPARMOUR recon-
structs the features in two ways. One converts the absolute
frequency value into term frequency-inverse document fre-
quency (TFIDF) value, which reflects the importance of each
API call. The other constructs graphs from the unigram and
bigram. The purpose of feature reconstruction is to clean the
perturbations brought in by the adversarial samples [9].

Secondly, DEEPARMOUR builds a voting model with
three classifiers, i.e., random forest, multi-layer perceptron,
and a graph learning method named structure2vec [22]. The
three classifiers are using different learning strategies and
different features. Such a design is motivated by the observa-
tion that most effective adversarial attacks are targeting one
or one type of machine learning method [23]. The voting
mechanism can mitigate the risk of one classifier being
fooled by the adversarial by weighted voting.

Thirdly, we leverage the adversarial retraining to
strengthen the robustness of DEEPARMOUR which is one of
the most effective adversarial countermeasures [8]. Particu-
larly, we automatically generate many adversarial samples
in the same format of training dataset. We retrain the
adversarial samples by following the same training stage.
Moreover, the voting weights will also be optimized by the
adversarial samples.

B. Testing Stage
In the testing stage, DEEPARMOUR takes the unlabeled

malware API n-grams as input and outputs its classifica-
tion label. Following the same flow in the training stage,

DEEPARMOUR firstly reconstructs the features with TFIDF
generator and graph constructor. Then, DEEPARMOUR loads
the three trained classifiers and gets their prediction proba-
bilities. Finally, DEEPARMOUR predicts the malware class
based on the weighted voting.

V. DESIGN

In this section, we present the key designs of DEEPAR-
MOUR in defending the adversarial attacks, including feature
reconstruction, weighted voting, and adversarial retraining.

A. Feature Reconstruction

Feature reconstruction is designed to clean the perturba-
tions brought by outliers and adversarial samples. Given the
bag-of-n-grams, DEEPARMOUR uses two different feature
reconstruction methods, TFIDF and graph representation.

Term frequency-inverse document frequency (TFIDF)
is a weighting factor for text mining, which is intended to
show the importance of a word to a document in a large
corpus [24]. The malware classification problem shares the
similar context to text mining because we can regard a
malware as a document and an API call as a term. Given
the absolute frequency of each word, the TFIDF weighting
will decrease the value of the words that frequently appear
in many document types, such as “the”, “a”, and “an”. At
the same time, it will increase the value of those words
that only appear in a limited number of document types or
documents. The insight behind such a design is that if a word
frequently appears in different types of documents, it will be
less effective in classifying the documents. The analogy to
malware classification is that those API calls which occur
in all malware samples are likely to not be indicative of
malware at all, and may in fact be common API calls to
all windows executables. Thus it makes sense to consider
such APIs with less weights than those that happen less
frequently. Therefore, we use the TFIDF value instead of
the absolute frequency to classify the malware.

TFIDF weight is computed by the following three equa-
tions. Firstly, we get the term frequency (TF) by calculating
the relative frequency of a term t in a document d using
Equation 1, where ft,d denotes the absolute frequency of
term t in the document d,

∑
t′∈d ft′,d denotes the accumu-

lated frequency of all the terms in the document d.

tf(t, d) =
ft,d∑
t′∈d ft′,d

(1)

Next, we calculate the inverse document frequency (IDF)
by following Equation 2, where |D| denotes the number of
total documents in the corpus, td(t,D) denotes the number
of documents in which a term t appears.

idf(t,D) = log
|D|

1 + td(t,D)

td(t,D) = |d ∈ D,∃t ∈ d|
(2)



Finally, the TFIDF value of a term t in the document d
is calculated by multiplying its TF and IDF value as shown
in Equation 3.

tfidf(t, d) = tf(t, d) ∗ idf(t,D) (3)

A graph representation keeps the structure information,
which is an effective representation used by many malware
detection methods [25]. By representing each malware as
a graph, malware classification is transformed to a graph
classification problem. Given the bag-of-n-grams, one can
build a malware API graph by taking each API as a node
and the bigram as an edge. However, such a design still faces
two challenges.

Challenge #1: how to embed node ID. The node ID has
a meaning in malware classification scenario and should be
a part of the initial node embedding. Realizing the node
ID is a categorical feature, a one-hot embedding should be
a good fit. However, for the given problem in this work,
there are 1, 111 different node IDs which would lead to a
dimensionality explosion [26]. To solve this issue, we utilize
the feature hashing technique [27], and are able to use 10-
dimension embedding vector to represent each node ID.

Challenge #2: how to keep the information beyond
the structure. While graphs keeps rich structural informa-
tion [28], [29], a graph learning method requires more
information to learn an accurate embedding for classification
purpose. To this end, we build an initial embedding for each
node as [node id, node freq, out edge freq, in edge freq].
For each node embedding, node id is a 10-dimension em-
bedding for the node ID, node freq is the frequency value
of the unigram, out edge freq is the average out edge
frequency value getting from the bigram, in edge freq is
the average in edge frequency value getting from the bi-
gram. We do not use trigram because it has already been
represented by connecting two bigrams in the graph.

B. Weighted Voting
Observing that most adversarial attacks are targeting one

or one type of machine learning method [23], we design a
weighted voting system by combining three different classi-
fiers: random forest (RF), multi-layer perceptron (MLP), and
structure2vec. RF and MLP are using the weighted TFIDF
value, while structure2vec is using the graph representation.

DEEPARMOUR takes the prediction probabilities of the
three classifiers as inputs, instead of their final prediction
labels. This design is motivated by the fact that targeted
adversarial attacks try to push a sample to cross the decision
boundary between the original and targeted class. Although
the adversarial sample will be detected as the wrong target
class, the original class usually has the highest probability
among the remaining classes [30].

In the training stage, DEEPARMOUR takes three probabil-
ity vectors as the input and learns three parameters α, β, γ to

minimize the loss value between the voted and actual label.
The learning process is based on Equation 4 as follows:

argmin
α,β,γ

||α ∗ Y1 + β ∗ Y2 + γ ∗ Y3 − Y || (4)

where α+β+γ = 1, Yi denotes the 5-dimension probability
vector of the i-th classifier, and Y is the actual label. The
parameters are learned from both the normal training and the
adversarial retraining samples. In the testing stage, DEEPAR-
MOUR uses the three learned parameters and predicts the
label as the one with the highest probability.

Random Forests is an ensemble method using many
decision trees as weak learners. Random forest is a popular
choice for many learning tasks as they typically perform
very well and have a small number of hyper parameters to
choose from. Our RF learner was configured with 100 trees
and utilized the standard

√
d random features for each split,

where d is the total number of features available.
A fully-connected neural network (FCNN), or multi-layer

perceptron (MLP) is the most traditional neural network
architecture. It consists of an input layer, an output layer,
and some number of hidden layers. We utilized a MLP with
two hidden layers, each with 160 neurons, relu activation
function, 0.001 learning rate.

Our last learner is a graph based deap learning method
structure2vec [22]. This learner is able to build vector
representations for graph nodes, subgraphs, or the entire
graph structure, by learning embeddings for every node, as
well an aggregation function to combine embeddings and
capture relevant relationships. We set the intermediate and
final embedding size as 128, iteration depth as 5, learning
rate as 0.0001, epoch as 100.

C. Adversarial Retraining

Adversarial retraining is one of the most effective ways
to defend known adversarial attacks. We firstly generate
adversarial samples for this problem. Later, we retrain the
three classifiers and the voting parameters.

Based on our threat model, we are only considering the
adversary who is capable of evasion attacks. In the general
case, it would likely entail modifying a malware sample
to utilize different API calls to accomplish the same task.
For example, the Virus could potentially be misclassified
as AdWare. Because we do not have access to the original
malicious applications, or the API mappings, we can only
generate our adversarial samples based on the provided
training data.

In this work, we implemented an effective adversarial
sample generation method based on the Fast Gradient Sign
Method (FGSM) [5], which relies on knowledge of the
learned parameters within a neural network in order to build
the adversarial samples. The task of generating the samples
is very similar to how the nerual network is trained, except
rather than updating the weights to minimize the loss, we



Table I
DATASET SPECIFICATION.

Packed
Virus Worm Trojan Malware AdWare Total

Normal
malware 11,844 11,253 771 692 512 12,536
Generated
adversarial 1,303 308 120 111 87 1,929
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Figure 2. The performance on the non-adversarial dataset.

modify the input to minimize the loss. The loss in the
targeted FGSM variant [31] is the difference in the predicted
output and the target output. The adverserial samples are
generated in an iterative approach described by the following
equation:

X0
∗ = X;

Xn+1
∗ = ClipX(Xn

∗ − ε ∗ sign(∇xJ(Xn
∗ , yt))

(5)

Here, X is our targeted training sample and X∗ is our
adversarial sample, yt is our target label, ε is the perturbation
parameter per iteration. The function J represents the cost
function of the model, and ∇x computes the gradient. The
function sign returns the sign of the resulting gradient vec-
tor. The Clip function is an element-wise clipping function
to constrain the features to proper values. In the context of
malware execution traces, we define our clipping function
to pin features to strictly integers greater than or equal to
zero. We also set the perturbation parameter ε to 1.

VI. EXPERIMENT

The experiments are performed on a server with Intel
Xeon E5-2620 (2.00 GHz) CPU, which has 12 cores with
15 MB of last-level cache and 128 GB of main memory.
The server is equiped with one Nvidia Tesla K40c GPU
which has 12GB memory. The server runs Ubuntu Linux
(16.04) operating system. We use the machine learing library
scikit-learn (version 0.19.1) and neural network framework
TensorFlow (version 1.11.0).

The performance metrics we used are accuracy, weighted
F1, and macro F1. The accuracy is calculated by dividing
the number of correctly classified samples over the total
number of samples. The basic F1 score is the harmonic
average of the precision and recall. For multiclass evaluation,
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Figure 3. The performance of all the methods on the adversarial dataset.

the macro F1 calculates the metrics for each label and gets
the unweighted mean, while weighted F1 gets the weighted
mean based on the label imbalance.

A. Tests on the Normal Malware Dataset

We perform the baseline tests on the normal malware
dataset, which is free of adversary attacks. The specification
of this dataset is shown in Table I. We randomly split
the whole dataset into ten groups and perform 10-fold
cross validation. Besides the three classifiers in our voting
system, random forest (RF), multi-layer perceptron (MLP),
and structure2vec (GL), we also compare with support vector
machine (SVM) with radial basis function (RBF) kernel,
decision tree (DT), and k-nearest neighbor (k-NN, k = 5).
All the classifiers are using the original features to train
and test. In this experiment, DEEPARMOUR only applies
the voting mechanism on the three clssifiers, not using the
TFIDF weight or retraining.

The performance of 10-fold cross validation is shown
in Figure 2, where we use the average of the 10 runs to
represent. DEEPARMOUR and RF achieve the best perfor-
mance in terms of accuracy, weighted F1, and macro F1. For
the normal cases, DEEPARMOUR weights RF highest, MLP
next, and GL lowest. For the accuracy, RF and DEEPAR-
MOUR get the highest score 0.9894, DT gets 0.9888, MLP
gets 0.981, GL gets 0.9045, and SVM gets 0.7998. Similar
ranks are also observed in weighted F1 and Macro F1. Our
method achieves high accuracy because it is voted on three
classifiers, i.e., RF, MLP, and GL, and all of them achieve
high accuracy.

B. Tests against Adversarial Attacks

To test the robusteness of the baseline methods, we
automatically generate 1, 929 adversarial samples targeting
the MLP with FGSM. The specification of the generated
adversarial dataset is shown in Table I. We train all the
methods with the whole normal malware dataset (12, 536
samples), and test them with all the 1, 929 adversarial
samples. In this test, DEEPARMOUR only applies the voting
mechanism on the three clssifiers, not using the TFIDF
weight or retraining.

Figure 3 presents the performance of all the methods on
the adversarial samples. One can see that MLP only gets
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0.1177 accuracy, 0.1551 weighted F1 score, and 0.0754
macro F1 score. Such a low performance shows the ef-
fectiveness of the targeted adversarial attack. Also, for
all the other basic classifiers, the adversarial samples are
able to greatly lower their performance compared with
non-adversarial test. Particularly, the accuracy, weighted F1
score, and macro F1 score are below 0.68, 0.65, and 0.27,
respectively. The graph learning method, GL, shows the
strong robustness against adversarial, since it is able to
achieve the highest weighted F1 score 0.65, around 8%
higher than the second (DT, 0.57). Although MLP shows low
performance, the other two classifiers used in our methods
work for different cases. Therefore, voted by the three
classifiers, DEEPARMOUR is able to achieve 0.6754, 0.8063,
and 0.8063 for accuracy, weighted F1 score, and macro F1
score, respectively.

C. Performance of Different Defense Techniques

We also evaluate the performance of our proposed adver-
sarial defense techniques, including feature reconstruction
and adversarial retraining.

Among the feature reconstruction techniques, the graph
representation can only be used in the graph learning method
which has been proved to be robust against adversarial
shown in Figure 3. For the TFIDF weight, we tested on
the specific MLP model because it is the one the adver-
sarial attacks are targeting. The performance is significantly
increased as shown in Figure 4. Particularly, the accuracy
improves from 0.1177 to 0.675, the weighted F1 improves
from 0.1551 to 0.6646, and the macro F1 improves from
0.0754 to 0.4613.

Further, we evaluate the effectiveness of retraining against
adversarial attacks. Given the trained models on all the
non-adversarial samples, we retrain them with a part of
the adversarial dataset and test with the rest. Note that
we only use the original feature values and do not apply
TFIDF weight. We retrain with 10%, 20%, 30%, 40%, and
50% adversarial samples as shown in Figure 5. By only
retraining 10% of the adversarial samples, the MLP method
is able to significantly improve the accuracy from 0.1177
to 0.7928. DEEPARMOUR is able to achieve 0.81 accuracy
by improving 13.5%. The accuracy of all the classifiers
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Figure 6. The accuracy of all the methods on the adversarial dataset with
the combined defense techniques.

improves with the increase of trained adversarial samples,
with the exception of SVM dropping a little bit. Particularly,
DEEPARMOUR is able to achieve 0.8921 accuracy when
retraining with 50% of the adversarial samples.

Figure 6 presents the accuracy of all the methods on the
adversarial dataset with the combined defense techniques.
Although TFIDF may not increase the accuracy for some
methods, its combination with retraining indeed increase the
accuracy. For DEEPARMOUR, by using TFIDF weights and
retraining 10% adversarial samples, it is able to achieve
0.8394 accuracy. Further, DEEPARMOUR can increase to
0.9036 accuracy by retraining 50% adversarial samples.

D. Parameter Study

In DEEPARMOUR, the voting weights α, β, γ for RF,
MLP, and GL, are learned from the training dataset. Ob-
serving that the RF and MLP fit better than GL in terms of
non-adversarial testing, the weights of RF and MLP will
be higher than the GL. In such scenario, the parameters
are learned from the normal malware dataset and are set
to 0.49, 0.42, 0.09 for α, β, γ, respectively. These values
are used for the test of non-adversarial dataset. For the
adversarial attacks, GL is showed to be robust so that its
weight will increase accordingly. In the adversarial scenario,
the parameters are learned from both the normal malware
dataset and our generated adversarial dataset. They are set
to 0.3, 0.39, 0.31 for α, β, γ, respectively. These values are
used for all the tests related to adversarial attacks.

VII. RELATED WORK



In this section, we will elaborate the related works towards
adversarial countermeasures and malware classification.

Various adversarial countermeasures have been ex-
plored to protect machine learning algorithms from an
adversary. They can be divided into proactive and reactive
measures. Proactive measures include techniques such as ad-
versarial retraining [32] [33] and classifier robustifying [34].
Both techniques were adopted in a way in this work.
The former countermeasure involves building adversarial
samples and retraining your models with these samples. This
should improve model accuracy, as well as make it harder
for an adversary to craft harmful input. The latter technique,
classifier robustifying, generally means building sufficiently
deep, or complex models to fit the data better and not be
susceptible to adversarial attacks.

Reactive countermeasures include techniques such as
adversarial detection [35], input reconstruction [36], and
network verification [37]. Adversarial detection involves
training special purpose classifiers which typically only
decide on weather or not an input is adversarial or not. Input
reconstructed, utilized in this work, relies on taking inputs
and converting them back to known good features prior
to processing them with the machine learning algorithm.
Network verification trains models based on various char-
acteristics of the classification models being verified (e.g.,
per-layer node activation values). In this way, a model can
learn when the classification model is performing properly,
or improperly, potentially due to an adversarial attack.

Our work is different from three aspects. Firstly, we are
focusing on an important security application, malware clas-
sification, which is rarely studied against adversarial attack,
while most previous works are designed for computer vision
related adversarial attacks. Secondly, we design a novel
attributed graph with graph learning method for malware
API sequence, which provides a new insight against current
adversarial attacks. Thirdly, our newly designed weighted
voting mechanism uses different machine learning methods
on different data representation. It is shown to be robust
against potential perturbations brought by adversarial attcks.

Malware classification has been studied for a long time.
Most methods use the features extracted from the static
and dynamic analysis [38], [39], [40], [41]. The static
analysis analyzes the binary code and extracts features such
as the hash signature as well as binary code patterns.
In contrast, dynamic analysis executes the malware in an
isolated environment and monitors its runtime behavior such
as system calls, registry operations, and network accesses.
Recent works use the deep learning techniques to achieve
high accuracy. However, they are proved to be vulnerable to
the adversarial as well.

VIII. DISCUSSION

As it is very challenging to build a ML model that is com-
pletely resilient to adversary attacks, we sought out to build
a model that would make it sufficiently challenging for an
adversary to accomplish his goals. Although DEEPARMOUR
could be attacked if the majority of classifiers were fooled,
we believe achieving this majority is much more challeng-
ing than fooling any single model alone. Additionally, as
we utilize the TFIDF representation, small perturbations
to frequently used features will have less effect on our
model accuracy, and thus be less likely to be utilized by
an adversary to fool our algorithms. Finally, by retraining
our model with our adversarial examples, our model will be
more robust to typical ML evasion attacks.

It is possible that our model will still be susceptible to
evasion attacks, as the high dimensional space provides a lot
of room for samples to move and potentially cross decision
boundaries where they should not. However, the methods we
outlined in this work we believe should make it sufficiently
complex for an adversary to attack the system.

While we have demonstrated that our approach works for
malware detection against adversarial attacks, our approach
can generalize to other cognitive systems. The two major
ideas, feature reconstruction and weighted voting, can be
applied to many cases, such as spam detection, intrusion
detection, biometric authentication, etc. [10]. Partitcularly,
the TFIDF is an efficient measurement for feature impor-
tance and has been demonstrated to be effective for many
cases, such as, citation [42], object maching in video [43],
etc. The attributed graph representation and graph learning
technique have been applied to many applications with great
performance, such as binary code similarity detection [44],
recommender system [45], and drug discovery [46].

IX. CONCLUSION

In this paper, we have implemented an adversarial at-
tack resilient malware classification system, DEEPARMOUR.
DEEPARMOUR applies a voting system with three different
malware classification methods, random forest, multi-layer
perceptron, and structure2vec. DEEPARMOUR also applies
two adversarial defense techniques, feature reconstruction
and adversarial retraining. We tested DEEPARMOUR on var-
ious scenarios. For non-adversarial scenario, DEEPARMOUR
is able to achieve 0.989 accuracy. For unknown adversarial
scenario, DEEPARMOUR is able to achieve 0.675 accuracy.
Further, by retraining only 10% of the adversarial samples,
DEEPARMOUR is able to achieve 0.839 accuracy.
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