
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2015; 8:952–969

Published online 3 July 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1052

RESEARCH ARTICLE

BotCatch: leveraging signature and behavior for
bot detection
Yuede Ji1,2, Qiang Li1,2 *, Yukun He1,2 and Dong Guo1,2

1 College of Computer Science and Technology, Jilin University, Changchun, China
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China

ABSTRACT

The goal of bot detection is to discover malicious bot processes by signature comparison or behavior analysis. Existing
approaches have several drawbacks, such as requiring a lot of prior knowledge, low detection accuracy, and high false
alarm rate. In this paper, we propose a multi-feedback approach, BotCatch, to detect bots effectively and efficiently on a
host by leverage of a combination of signature and behavior. First, BotCatch assigns suspicious files to signature-analysis
and behavior-analysis modules, which generate each detection result. Second, BotCatch correlates signature and behavior
results to generate the final detection result through correlation engine. Third, BotCatch feeds back signature, behavior, and
correlation results to dynamically adjust detecting modules through multi-feedback engine. We evaluated the performance
of BotCatch with 636 bot and 150 benign samples. Our results indicate that BotCatch achieves an accuracy of 97.1%
and an F-measure value of 0.982 simultaneously, which is better than existing approaches without feedbacks. BotCatch,
due to the multi-feedback mechanism, has the ability to gradually get more robust and accurate as the number of samples
increases. The final stage even reaches an accuracy of 98.5% and F-measure value of 0.991. Copyright © 2014 John Wiley
& Sons, Ltd.

KEYWORDS

botnet; bot detection; feedback; correlation

*Correspondence

Qiang Li, College of Computer Science and Technology, Jilin University, Changchun, China.
E-mail: li_qiang@jlu.edu.cn

1. INTRODUCTION

A bot is a host that has been compromised by malware
under the control of a botmaster through command and
control (C&C) channel (i.e., Internet Relay Chat [IRC],
Hypertext Transfer Protocol [HTTP], and P2P). When
many bots work together, they form a botnet. Botnets have
become one of the most serious threats to Internet security
[1]. The botmaster can utilize botnets to conduct vari-
ous cyber crimes, such as spreading malware, conducting
distributed denial-of-service (DDoS) attacks, spamming,
and phishing. Recently, botnets have become the major
platform for most online criminal activities [2].

A lot of efforts have been conducted on how to detect
bots and botnets. Botnets can be detected on hosts or
in networks. Network-based detection measures mainly
observe data traffic in the network and look for suspi-
cious communications that may be from bots or C&C
servers [3]. Network-based approaches primarily target bot
hosts and botmaster hosts, while host-based approaches
mainly target bot processes and malicious files on infected

hosts. This research mainly focuses on detecting bots
on hosts.

Host-based bot detection approaches are usually
either signature-based or behavior-based [3]. Signature
approaches mainly extract the feature information of
suspicious programs and match them against a signa-
ture database, such as Rishi [4]. Behavior detection
approaches monitor the abnormal behavior of hosts to
determine whether any one host is infected. For exam-
ple, the approaches might involve checking the status of
the operating system, the running status of suspicious pro-
grams, access to suspicious registries or files or system call
sequences, and so on. [5–7].

Signature-based bot detection approaches are low-risk
and result in few positives and low overhead. However,
they are unable to detect unknown bots or overcome
obfuscation techniques. They also require a lot of prior
knowledge. Behavior bot detection approaches can deal
with unknown bots and some obfuscation techniques.
However, they are high risk, provide only low detection
accuracy, and incur high overhead.

952 Copyright © 2014 John Wiley & Sons, Ltd.

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

Bots and botnets are evolving to become more and
more difficult to detect. Their evolution tendencies can be
divided into three categories: (i) More hidden mechanisms.
Existing bots utilize advanced hidden techniques to evade
detection, such as dividing one process into several [8],
using covert channels to communicate [9]. (ii) More obfus-
cation. Existing bots are acting more and more like benign
software. They also use other techniques, such as meta-
morphism mechanism that changes the internal structure of
software while maintaining its functionality [10,11]. (iii)
Novel C&C channels. Bots used to utilize IRC, HTTP, and
P2P as C&C channels. However, new bots are using some
channels that are difficult to detect, such as online social
network [12,13] and the Tor network [14,15].

With the evolution of these new botnet behaviors, pure
signature-based or behavior-based detection approaches
are less effective and efficient. Combining signature-
based and behavior-based bot detection can maintain some
advantages and overcome some critical disadvantages,
such as the ineffectiveness of signature-based detection
against unknown bots and obfuscation techniques, and the
high risk and low detection accuracy of behavior-based
detection. However, many challenges must be overcome
in order to combine the two detection methods, such as
how to assign weight to each method [16]. Although
there are many techniques for combining scores (lin-
ear discriminant analysis, quadratic discriminant analysis,
machine learning, etc.), they need to be trained on large
samples labeled by a human oracle. The accuracy and
coverage of this training sample are essential to the perfor-
mance of this kind of correlation approaches.

To solve these problems, we propose a multi-feedback
approach, BotCatch, to detect bots effectively and effi-
ciently on a host by leverage of a combination of signature
and behavior. BotCatch includes five modules: an analysis
engine, a signature-analysis module, a behavior-analysis
module, a correlation engine, and a multi-feedback
module. The analysis engine assigns the suspicious file
to either the signature or behavior-analysis module. These
modules analyze the file and generate detection results
for the correlation engine. Then, correlation engine corre-
lates signature and behavior detection results to generate
the final detection result. The multi-feedback module uses
the signature, behavior, and correlation results to dynam-
ically adjust BotCatch. It optimizes the signature-analysis
module by maintaining the signature database. It optimizes
the behavior-analysis module by maintaining the sample
set and guiding the module’s learning procedure. It opti-
mizes the correlation engine by modifying the parameters.
Our evaluation results show the following: (i) The corre-
lation algorithm in BotCatch is efficient and effective in
combining signature and behavior detection results. (ii)
The multi-feedback mechanism makes BotCatch adaptive
to samples and gradually becomes more robust and accu-
rate. (iii) Other correlation algorithms, such as those of
support vector machine (SVM) models, are also effective;
however, our correlation algorithm with its multi-feedback
mechanism provides better detection results.

Our work makes the following contributions:

(1) We propose an end-host approach, BotCatch, to
detect bots using a combination of behavior-based
and signature-based bot detection. By combining
signature-based and behavior-based detection, our
approach maintains their advantages and overcome
some of their critical disadvantages. BotCatch is
composed of five modules: an analysis engine, a
signature-analysis module, a behavior-analysis mod-
ule, a correlation engine, and a multi-feedback
module.

(2) We propose a multi-feedback mechanism that
takes signature, behavior, and correlation results to
dynamically optimize BotCatch. It optimizes the
signature-analysis module by maintaining the sig-
nature database. It optimizes the behavior-analysis
module by maintaining the sample set and guiding
its learning procedure. It optimizes the correlation
engine by modifying the parameters.

(3) We evaluated the performance of BotCatch with 636
bot and 150 benign samples. Our results indicate
that BotCatch achieves an accuracy of 97.1% and
F-measure value of 0.982, which is better than exist-
ing works without feedbacks. More importantly, as
the number of samples increases, BotCatch becomes
more robust and accurate. BotCatch even reaches an
accuracy of 98.5% and F-measure value of 0.991 at
the final stage.

The paper is organized as follows. Section 2 compares
the proposed approach to previous approaches. Section 3
presents a system overview, including system architecture
and methodology. Section 4 presents the multi-feedback
mechanism. Section 5 presents experiment details and
results. Section 6 presents discussions. Section 7 summa-
rizes this paper.

2. RELATED WORK

2.1. Signature-based bot detection

Signature-based detection approaches mainly extract fea-
ture information about suspicious programs and match that
information to a knowledge base of existing bots [4,17].
Rishi is a signature-based IRC botnet detection system that
detects IRC bots using well-known IRC bot nickname pat-
terns as signatures. Rishi mainly relies on the monitoring
of passive network traffic for unusual or suspicious IRC
nicknames and IRC servers, as well as uncommon server
ports. It employs n-gram analysis and a scoring system
to detect bots that use uncommon communication chan-
nels, and these channels cannot be detected by classical
intrusion detection systems. Rishi is able to automatically
generate warning emails to report infected machines to an
administrator. The disadvantage of this approach is that it
cannot detect encrypted communication or non-IRC bots.

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 953
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

2.2. Behavior-based bot detection

Many behavior-based bot detection approaches have been
proposed [5,6,18–21]. Seungwon et al. proposed EFFORT
[7], which includes five modules: a correlation engine
and modules, analyzing human-process-network correla-
tion, process reputation, the exposure of system resources,
and the trading of network information. The correlation
engine correlates the detection results of the other modules
to generate the final detection result. Zeng proposed a host-
level and network-level information correlation approach
for detecting bots [22]. They used process monitor to mon-
itor information on the host, including the registry, file
system, and network stack. The suspicion level generator
uses the extracted feature vector to generate the suspicion
level. The router passes the collected Netflow data for each
time window to the flow analyzer. Then, flow analyzer
analyzes the Netflow data, extracts the feature vector, and
passes the feature vector to the cluster analyzer. The cluster
analyzer clusters the hosts in the local area network based
on the network feature vector of each time window and the
preprocessed information of host distance and then passes
the results to the correlation engine. By sending requests
to all hosts in each cluster, the correlation engine combines
host information with network information to calculate the
final detection results and determine whether a host has
been infected.

2.3. Combined signature-based and
behavior-based bot detection

Ammar et al. proposed a system for combining signature-
based and behavior-based techniques using an application
programming interface (API) graph system [23]. There
are three procedures in their framework—preprocessing,
graph construction, and graph matching. The preprocess-
ing procedure executes the Portable Executable (PE) file
and collects the API call after unpacking. The graph con-
struction procedure constructs the call graph based on the
API call and operating system resources and then decreases
the constructed API graph. The graph matching procedure
matches the graph with the API call graph database. This
framework combines behavior and signature information,
but it is only an ideal framework without further implemen-
tation or experiments. Guo et al. proposed a novel malware
detection framework based on binary translation, called
HERO [24]. The framework exploits static and dynamic
binary translation features to detect a broad spectrum of
malware and prevent it from being executed. They first use
an analyzer based on a static binary translator to analyze
the binary file. If the analyzer cannot complete the analysis,
they use an analyzer based on a dynamic binary translator
to analyze the binary file. Their work still faces the prob-
lems of low detection accuracy and a high false alarm rate.
Hsiao et al. proposed an approach that combines dynamic
passive analysis and active fingerprinting for bot detec-
tion in virtualized environments [16]. A passive detection
agent on a virtual machine monitors its host for profiles of

bot behavior and checks monitored behavior with behavior
on other hosts. The active detection agent sends a specific
stimulus to a host and examines if the expected behavior is
triggered. However, the active agent needs to know a lot of
specific bot commands.

Unlike this earlier work, our work leverages multi-
feedback mechanisms and combines signature-based and
behavior-based bot detection. In our prototype, the
signature-analysis module uses the signature databases of
antivirus tools to compensate for the weakness of needing
to build a large signature database. The behavior-analysis
module executes the suspicious file in an isolated envi-
ronment and monitors its host behaviors, including in the
registry, file system, and network. The correlation engine
uses a correlation algorithm and dynamically updates the
weight factors to determine whether files are malicious
or benign. The multi-feedback mechanism dynamically
optimizes the signature-analysis module, behavior-analysis
module, and correlation engine to make the whole system
more accurate.

3. SYSTEM OVERVIEW

In this section, we present an overview of BotCatch,
including system architecture and methodology.

3.1. System architecture

BotCatch primarily consists of five modules: an analysis
engine, a signature-analysis module, a behavior-analysis
module, a correlation engine, and a multi-feedback mod-
ule. A system diagram is shown in Figure 1.

The analysis engine is the entrance to BotCatch, and it
provides the submission interface. When a suspicious file
is submitted to our approach, the analysis engine assigns
it to the signature-analysis and behavior-analysis modules
separately.

The signature-analysis engine in this module queries the
signature detection results using the well-known network

Figure 1. Architecture of BotCatch.

954 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

scanner VirusTotal [25] and our signature database. The
network scanner returns the detection results of up to
47 different antivirus tools and scan engines. Our signa-
ture database stores the signature of suspicious samples as
aggregated by the multi-feedback module. The signature-
analysis engine generates the final signature detection
result and delivers it to the correlation engine.

In the behavior-analysis module, the host behavior
monitor executes the suspicious sample in an isolated envi-
ronment and monitors its host behaviors, including the
registry, file system, and network. Then, it delivers the host
behaviors to the behavior-analysis engine. The behavior-
analysis engine generates the final behavior detection
result using a machine learning algorithm and delivers it to
the correlation engine.

The correlation engine finally generates a detection
result between 0 and 1. If the detection result is greater than
a threshold, it will be detected as malicious. Otherwise, it
will be detected as benign. If the detection result is close to
1, it will be regarded as a high detection value. Otherwise,
if it is close to 0, it will be regarded as a low value.

The multi-feedback module takes signature, behavior,
and correlation results to dynamically optimize BotCatch.
The multi-feedback module optimizes the signature-
analysis module by maintaining the signature database and
optimizes the behavior-analysis module by maintaining the
sample set and guiding the module’s learning procedure.
The multi-feedback module also optimizes the correlation
engine by modifying the parameters.

3.2. Methodology

In this section, we present the methodology of our
approach.

3.2.1. M1: analysis engine.

The analysis engine provides two functions: a sub-
mission interface and task assignment. It provides three
different submission methods: Web utility, submission util-
ity, and Python functions. The analysis engine provides a
basic Web utility that users can use to submit samples. The
submission utility is a command-line utility that facilitates
sample submission. The Python functions directly use the
interface of the database to add samples, which is the most
efficient method. The analysis engine also manages task
assignment. If the signature-analysis and behavior-analysis
modules are in a waiting state, the sample will be directly
assigned to them. If they are analyzing another sample, the
new sample is stored in our database. When they finish
their analysis, the analysis engine assigns new samples to
them in order by submission time.

3.2.2. M2: signature-analysis module.

The signature-analysis module is composed of a net-
work scanner, the signature-analysis engine, and the sig-
nature database. Given a new file, the signature-analysis
engine first accesses the network scanner for the antivirus
signature of the analyzed file. If a signature is found,

the network scanner returns the result to the signature-
analysis engine. Then, it accesses the signature database
to check whether this file has been flagged as malicious.
The signature-analysis engine generates the final signature-
analysis result based on the network scanner and signature
database.

3.2.2.1. Network scanner. Most signature-based bot
detection approaches first extract signatures of known bots
to build a large signature database [3]. When detecting a
suspicious file, they generate its signature and compare the
signature to those in the database. We lack a large-scale
collection of bot samples, and even if we have enough, they
may not include every known sample. Antivirus scanners
are malware detectors, which attempt to identify malware
using signatures and other heuristics techniques [23].

Taking the preceding text into consideration, we can use
the knowledge databases of antivirus scanners to generate
signature detection results. The network scanner accesses
the detection results of many famous antivirus engines.
They are deployed in different countries and regions, and
some bot samples may be specific to certain regions. Thus,
we use the ratio of positives with the total number to
denote the suspiciousness value of the signature. Suppose
d antivirus engines detect it as malicious and the total num-
ber of antivirus engines is t. Then, the signature-analysis
result will be d/t. We use snet to denote the network scanner
detection value and snet = d/t.

3.2.2.2. Signature-analysis engine. The signature-
analysis engine first accesses the network scanner to obtain
network scanner detection value. Then, it accesses the local
signature database. This database only stores the signa-
tures of the samples added by the multi-feedback module.
The multi-feedback engine adds two special kinds of sam-
ples. The first kind has a high correlation result but a
low signature result. These may be bot variants or novel
bots. The second kind has a low correlation result but a
high signature result. That means that the samples may
have similar signatures as malicious samples but have not
exhibited enough malicious behaviors. The multi-feedback
engine extracts the signatures of these two types of sam-
ples and adds them in the local signature database. We flag
the first type as malicious and the second as benign. The
multi-feedback mechanism is described in more detail in
Section 4.

The local signature database returns a result of 0 or 1,
and we use slocal to denote it. The final signature-analysis
result is shown in Equation (1). If s is greater than 1, then s
is set to 1. Then, the signature-analysis engine delivers the
signature-analysis result to the correlation engine.

s = snet + slocal, s 2 [0, 1] (1)

3.2.3. M3: behavior-analysis module.

In the behavior-analysis module, the host behavior
monitor executes the suspicious file in an isolated envi-
ronment and monitors its host behaviors, including the

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 955
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

registry, file system, and network. Then, it delivers the host
behaviors to the behavior-analysis engine. The behavior-
analysis engine generates the final behavior detection
result using a machine learning algorithm and delivers it to
the correlation engine.

3.2.3.1. Host behavior monitor. Before deploying
host behavior monitors, we needed to decide which behav-
ior features to capture. We analyzed the behaviors of
existing bots and observed that they share certain behav-
iors that are different from benign programs. As Silva et al.
summarized, bots have five phases in their life cycle: initial
injection, secondary injection, connection or rally, mali-
cious activities, and maintenance and upgrading [3]. We
classified these behaviors into three categories: registry, file
system, and network.

We present the execution procedure of a typical bot as
an example. A bot first creates an exe or dll file in the sys-
tem directory and registers an autorun key in the registry
to make itself run automatically. It also injects its binary
file into other processes to hide itself. Then, it opens one
or more ports to establish connections with C&C server.
Finally, the botmaster controls the bot to perform mali-
cious activities, such as information theft, DDoS attacks,
and spamming. The behavior features that we present can
cover these typical activities. We should note that a sin-
gle behavior such as those mentioned earlier may not be
malicious, but a combination of these behaviors indicates
a high possibility of malicious activity. So our behavior-
analysis engine uses all features of behavior to make
precise decisions.

To facilitate further analysis, the host behaviors of
each suspicious file are transformed into a uniform format
known as a behavior vector. Each behavior vector consists
of 12 behavior features, as shown in Table I. The first three
features are registry features, the next four are file features,
and the last five are network features. Each vector is rep-
resented in this way: <1 2 3 4 5 6 7 8 9 10 11 12>, from

Table I. Behavior feature vector.

Index Feature description

1 Creation or modification of autorun key in registry
2 Creation or modification of process injection key in

registry
3 Creation or modification of other critical registry keys
4 DLL Creation in the system directory
5 EXE Creation in the system directory
6 Modification of files in the system directory
7 Creation of other files in the system directory
8 Number of ports opened
9 Number of suspicious ports
10 Number of unique IPs contacted
11 Number of suspicious IPs
12 Number of unique domains queried

IPs, Internet protocols.

behavior 1 to 12. As mentioned earlier, these features are
intrinsic to bot processes.

As an example, consider the Zeus bot [26]. Zeus mainly
performs the following behaviors:

(1) Delete older versions: The Zeus bot searches for
any existing copies of previous Zeus infection files
(sdra64.exe files) and erases them. This procedure
usually takes place when the Zeus binary file is
updated with a newer version.

(2) Create a local copy: The Zeus bot makes an exact
copy of itself and saves it to C:/Windows/System32/
sdra64.exe. In order to hide itself, Zeus modifies its
modification, access, and creation times using infor-
mation from Ntdll.dll. It also sets sdra64.exe file
attributes to “system” and “hidden.”

(3) Set itself to run automatically using Autorun: The
Zeus bot appends the path C:/Windows/System32/
sdra64.exe to the registry key HKEY_LOCAL_MA-
CHINE/SOFTWARE/Microsoft-/WindowsNT/Current
Version/Winlogon/Userinit. This entry enables the
Zeus bot to start automatically.

(4) Inject a process : The Zeus bot injects the binary file
into the virtual memory of the winlogon.exe process
and passes control to this process by creating a new
user thread.

(5) Establish C&C connection: The Zeus bot injects
itself into another process, svchost.exe. This process
establishes a connection with the C&C server. In this
way, Zeus can receive and execute commands, such
as to steal information, launch DDos attacks, and
send spam.

By consulting Table I, we can see that when the Zeus
bot deletes older versions of itself, it exhibits behavior 6.
When it creates a local copy, it exhibits behaviors 5 and 6.
Using autorun is an example of behavior 1, injecting a pro-
cess is an example of behavior 2, and establishing a C&C
connection is an example of behaviors 8 and 10. Other
malicious behaviors besides these can also be captured by
these behavior features.

3.2.3.2. Host behavior analysis. Given the feature
vector, the behavior-analysis engine uses machine learn-
ing algorithms to generate a behavior detection value b.
It learns from benign and bot feature vectors to predict
unlabeled behavior vectors. Much previous research has
focused on the binary (malicious or benign) classification,
and the results are likely to be inaccurate, because of the
learning procedure [22]. In order to improve the learning
model, we calibrate the distance score to a posterior clas-
sification probability indicating how likely it is that a test
feature vector belongs to a particular class [27].

Pr(y = 1|x) � PA,B(f) �
1

1 + exp(Af + B)
, wheref = f (x)

(2)

956 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

Equation (2) presents the calculation formula of poste-
rior classification probability. In order to calculate it, we
need to have A, B, and f . We can have A, B through the
training dataset. f (x) is the decision value of the sample
vector; we can obtain it from the prediction procedure.
From Equation (2), we can conclude that the posterior clas-
sification probability is a value between 0 and 1. We use b
to represent the behavior detection value.

The sample set in the behavior-analysis module stores
the training dataset, which is updated by the multi-
feedback module. We will present more details in
Section 4.

3.2.4. M4: correlation engine.

There are many techniques for combining scores (lin-
ear discriminant analysis, quadratic discriminant analysis,
machine learning, etc.). However, they need to be trained
on large samples labeled by a human oracle. The coverage
and accuracy of this training sample are essential to the
performance of this kind of correlation approaches. Dif-
ferent from them, our correlation engine makes full use of
signature detection result and needs no prior knowledge.
With samples increase, BotCatch can gradually get robust
and accurate.

The input values for our correlation engine are signature
and behavior detection value. Among these values, s is the
signature detection value, b is the behavior detection value,
and w is the final detection value. The correlation engine
uses the correlation algorithm shown in Algorithm 1 to
generate the final detection value. Because s 2 [0, 1], b 2
[0, 1], and ˛,ˇ 2 [0, 1], w is still a value between 0
and 1. Suppose � is the final threshold, and if w < � ,

Algorithm 1 Correlation Algorithm

Input:
Signature detection value s
Behavior detection value b

Output:
Correlation result w

1: if behavior_on == false then
2: w = s {Behavior analysis is not ready}
3: else
4: if max(s, b) � � then
5: w = max(s, b)
6: else
7: Get the value of coefficients ˛ and ˇ
8: w = ˛s + ˇb
9: end if

10: end if
11: if w � � then
12: This file is malicious
13: else
14: This file is benign
15: end if
16: Return w

the suspicious file is considered benign; otherwise, it is
considered malicious.

In the correlation algorithm, we first check whether
behavior analysis is ready. It is ready when it has trained
at least once. If it is not ready, BotCatch is in the initial
stage and the final detection result is determined by the
signature detection value. If behavior analysis is ready, we
compare the signature detection value s with the behav-
ior detection value b and obtain the maximum max(s, b). If
max(s, b) � � , then w = max(s, b). Note that � is greater
than � , thus w is sure to be greater than � , and the file is
malicious.

Under this condition, we only use the signature or
behavior detection result. The file will be considered mali-
cious in three different situations. In the first situation,
s � � but b < � , which means this file has a high signa-
ture detection value and low behavior detection value. The
high signature detection value shows that many antivirus
engines find its signature in their malicious signature
databases. That means this file is a well-known malicious
file, and the correlation engine detects it as malicious.
It may have a low behavior value either because it has
not exhibited many malicious behaviors yet or because
the behavior-analysis engine is not robust enough yet.
In the latter case, BotCatch uses multi-feedback mod-
ule to improve the behavior-analysis engine. The second
situation in which a file will be considered malicious is
when s < � , but b � � , which means this file has a low sig-
nature detection value but a high behavior detection value.
The low signature detection value may indicate that obfus-
cation techniques are being used or that this is either a
variant or a novel bot. However, the high behavior detec-
tion value shows that it performs similar behaviors as other
bots. Thus, the correlation engine detects it as malicious.
The third case is s, b � � , which means that this file has
high signature detection and behavior detection values and
is certainly malicious.

When s, b < � , the correlation engine uses ˛s + ˇb
to calculate the final detection result. Parameters ˛ and ˇ
are weight factors, which are dynamically updated by the
multi-feedback module. The values of these parameters are
evaluated in our experiment.

4. MULTI-FEEDBACK MECHANISM

Because bots and botnets keep evolving, we should focus
on not only existing bot behaviors but also their possible
evolutionary descendants. With this motivation, we sought
an approach that can adapt to bot evolution. An incre-
mental learning algorithm is a possible solution [28] [29].
Learning from new data without forgetting prior knowl-
edge is known as incremental learning. We utilize a similar
mechanism—a multi-feedback mechanism—to gradually
optimize BotCatch. This mechanism not only allows the
behavior-analysis module to learn from old and new data
but also optimizes the signature-analysis module and cor-
relation engine. The multi-feedback mechanism allows our

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 957
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

approach to gradually adapt to the evolution of bots and
botnets.

The multi-feedback engine uses the signature, behavior,
and correlation results to dynamically optimize BotCatch.
It optimizes the signature-analysis module by maintaining
the signature database. It optimizes the behavior-analysis
module by maintaining the sample set and guiding its
learning procedure. And it optimizes the correlation algo-
rithm by maintaining parameters. In this way, the multi-
feedback engine acts like a brain, adjusting the approach to
make it more robust and accurate.

Algorithm 2 Multi-feedback Algorithm

Input:
Signature detection value s
Behavior detection value b
Correlation result w

Output:
Update signature database, sample set, and correlation
weight factors

1: if is_stable == false then
2: if n < init_limit then
3: + + n
4: Add it to sample set
5: else if n == init_limit then
6: behavior_retrain()
7: behavior_on = true
8: + + n
9: else

10: Add it to sample set and flag it as malicious or
benign

11: end if
12: else
13: if w � � && s < sig_lower then
14: Add it to signature database as malicious
15: else if w < � && s � sig_upper then
16: Add it to signature database as benign
17: else if w � � && b < behav_lower then
18: + + m
19: Add it to sample set as malicious
20: else if w < � && b � behav_upper then
21: + + m
22: Add it to sample set as benign
23: end if
24: end if
25: if m � �n && behavior_on == true then
26: behavior_retrain()
27: Update correlation parameters
28: n+ = m
29: m = 0
30: end if

4.1. Optimizing signature analysis

The multi-feedback engine maintains the signature
database to improve signature analysis when BotCatch

reaches a stable and robust state. According to the three
input values, the multi-feedback engine filters out two
kinds of samples: those with low signature results and high
correlation results and those with high signature results
and low correlation results. The first kind of samples is
not detected by signature detection but is detected by
BotCatch. They are thus not uploaded to VirusTotal or
recorded as variants or even novel bots. Samples of the sec-
ond kind are detected as malicious by signature detection
but as benign by BotCatch. These samples may have simi-
lar signatures as malicious samples but have not exhibited
enough malicious behaviors. We extract the signatures of
both of these kinds of samples and add them in our local
signature database. We flag the first kind of samples as
malicious and the second as benign.

If a sample similar to one of the first kind is ana-
lyzed again, even if the network scanner still returns a
low detection value, the local signature database returns a
match. Thus, the signature detection result will be high, as
described in Section 3.2.2. To be more specific, if the sam-
ple is detected as malicious and the signature is below a
certain threshold sig_lower, its signature is added to our
local signature database as malicious. In Algorithm 2, lines
13 to 16 are the signature optimization procedure.

4.2. Optimizing behavior analysis

The multi-feedback module optimizes the behavior-
analysis module in two ways: it maintains the behavior
sample set and triggers the learning procedure.

4.2.1. Maintaining the behavior sample set.

To maintain the behavior sample set, the multi-feedback
module uses different mechanisms based on the states of
BotCatch. Before BotCatch reaches stable state, the multi-
feedback module uses the first mechanism, which is on
lines 1 to 11 of the Algorithm 2. Because BotCatch is not
stable and robust, every sample is added to the sample
set for behavior training. When the total sample number n
reaches the initial threshold init_limit, it triggers first time
behavior training.

After BotCatch reaches a stable state, the multi-
feedback module uses the second mechanism. With this
mechanism, it does not add all samples to the sample set—
it extracts only two kinds of special samples. Samples of
the first kind have low behavior detection results and high
correlation results. The reason for the low behavior detec-
tion result may be that the sample did not exhibit much
malicious behaviors during monitoring. This kind of sam-
ple is nonetheless added to the sample set as malicious.
Samples of the second kind have high behavior detection
results and low correlation results. Samples like these are
added as benign.

4.2.2. Triggering the learning procedure.

The multi-feedback module triggers the learning pro-
cedure to make behavior analysis more stable and robust.
With more samples in the training set, the learning model

958 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

is more accurate, especially with different kinds of sam-
ples. By gradually adding more samples and triggering
the learning procedure, the multi-feedback module makes
the behavior-analysis module more efficient and effective.
Behavior training is triggered for the first time when sam-
ple number n reaches an initial threshold init_limit. After
training, the behavior-analysis module is ready, and the
variable behavior_on is set to true. The multi-feedback
engine records the total sample number n of last training
and new sample number m. When the ratio of n and m
reaches a certain level �, the feedback engine triggers the
retrain procedure of the behavior-analysis engine. It also
triggers the update procedure of the correlation parame-
ters, as shown on lines 25 to 30 of Algorithm 2. There
are two important thresholds: init_limit and �. If they are
too small, then the learning procedure is inefficient. If they
are too large, the triggering of feedback will take a long
time. Thus, these two values must be chosen carefully. We
present the impact of them in an experiment.

4.3. Optimizing correlation engine

The multi-feedback engine also optimizes the parameters
of the correlation engine. In the correlation algorithm, ˛
and ˇ denote the weight of signature and behavior detec-
tion, respectively. In order to improve the adaptivity of our
approach, we use a dynamic value instead of static value.
To begin with, the behavior-analysis module is not robust,
but the signature-analysis module is, so we set a high
detection signature weight and low behavior weight. In
this circumstance, detection results rely more on signature
analysis. When the training procedure of behavior-analysis
module is triggered, the update of correlation parameters is
synchronous. The behavior weight gradually increases and
the signature weight factor gradually decreases, concur-
rently. After they reach certain thresholds, the two weight
factors remain stable, causing BotCatch to reach its stable
state. There are three important parameters involved in this
process: ˛, ˇ, and the increase step ı. For example, we can
set the initial value of ˛ to 0.9, ˇ to 0.1, and the increase
step ı to 0.05. These parameters are configurable. For
example, if you want to stress behavior detection, you can
increase ˇ to a higher value. We evaluated these parameters
in our experiment.

5. EXPERIMENT

This section presents experiment details, including system
implementation, data collection, the impact of different
parameters, experiment results, and performance overhead.

5.1. System implementation

In the signature-analysis module, we use VirusTotal [25]
as our network scanner. VirusTotal is a free online service
that analyzes suspicious files and URLs and facilitates the
quick detection of viruses, worms, Trojans, and other kinds

Internet

Figure 2. Topology of analysis host.

of malicious content that is detected by antivirus engines
and network scanners. VirusTotal can return the detection
results of about 47 different antivirus engines with the most
updated signature databases. Our signature-analysis engine
looks up the suspicious analysis results of the file on Virus-
Total and uses it for further analysis. VirusTotal draws from
47 antivirus engines at the time of this writing, and every
engine returns a result of 0 or 1. A result of 0 denotes that
the file is benign, and a result of 1 denotes that the file is
malicious. Note that the file is not actually uploaded on
VirusTotal, and the signature result is from former analy-
sis. Thus, if the file was not previously uploaded on the
website, no results will be retrieved.

In the behavior-analysis module, host behavior mon-
itor executes the suspicious file in an isolated environ-
ment. It injects suspicious processes using QueueUser-
APC() to record registry-related and file system related
system calls, parameters, and status information. It uses
the PCAP library to extract network information, including
Internet protocols, HTTP requests, Simple Mail Transfer
Protocol (SMTP) traffic, and domains. We use Cuckoo
[30]—the leading open-source automated malware analy-
sis system—as our analysis system.

The topology of our analysis host is shown in Figure 2.
The analysis host has three analysis virtual machines. They
form an isolated local network. In order to capture accurate
network information, we configured the analysis machines
to connect to the Internet. The analysis host has the fol-
lowing configurations: Intel Q6600 quad-core processor,
2.40 GHz, 2 GB RAM, and Ubuntu 12.04 operating sys-
tem. We use VirtualBox 4.2.6 as our virtual machine with
Windows XP SP3.

5.2. Data collection

We collected bot binaries from Open Malware [31], which
has more than 5 million pieces of malware on its web-
site. We collected a total of 636 bot samples consisting
of 47 different kinds of bots. We summarized their names

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 959
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

Table II. Bots for evaluation.

Name Numbers Name Numbers Name Numbers

abot 6 cone 19 Lethic 20
agent 20 ebot 4 mbot 1
agobot 20 fbot 9 Nugache 7
Asprox 9 Forbot 20 pbot 20
BiFrost 20 gbot 20 Phatbot 1
Bagle 20 GTbot 4 Pushdo 2
bbot 2 ibot 1 qbot 16
Bobax 20 IRCBot 20 rbot 20
cbot 4 kbot 20 Rustock 20
Conficker 20 koobface 20 Rxbot 20
dbot 4 Kraken 8 sbot 8
Donbot 16 lbot 2 sdbot 19
Sinit 20 SpyBot 20 Srizbi 20
Storm 20 Trojan 20 ubot 2
vbot 2 xbot 20 Zeus 20
Flux 20 Lizard 15

and numbers in Table II. For benign samples, we tested
Google Chrome, Mozilla Firefox, Internet Explorer, bit-
comet, uTorrent, Eudora, eMule, and mIRC. We also col-
lected some free tools on the Internet as benign samples,
such as Sysinternals Live [32] tools. We collected 150
benign samples, for a total of 786 samples.

5.3. Evaluation metrics

We used several evaluation metrics to comprehensively
evaluate our prototype, including receiver operating
characteristic (ROC), F-measure, and accuracy. The confu-
sion matrix in Table III presents the relationship between
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). ROC curves illustrate the perfor-
mance of a classifier system as the discrimination threshold
is varied. ROC curves show the relationship between the
FP rate and TP rate, as presented by Equation (3). Based on
ROC, we calculated the area under the curve (AUC) values
using AUC Calculator to illustrate their detailed perfor-
mance [33]. The F-measure (FM) combines precision (P)
and recall (R) to present a balanced result [34]. Accuracy
(A) presents the proximity of measurement results to the
true value [35]. Equation (4) is used to calculate precision,
recall, F-measure, and accuracy.

TPrate =
TP

TP + FN
, TNrate =

TN

TN + FP

FPrate =
FP

TN + FP
, FNrate =

FN

TP + FN

(3)

P =
TP

TP + FP
, R =

TP

TP + FN

FM = 2
PR

P + R
, A =

TP + TN

TP + TN + FP + FN

(4)

Table III. Confusion matrix.

Predicted

Malicious Benign

Actual Malicious True positive False negative

Benign False positive True negative

5.4. Impact of different parameters

This section presents how to set the parameter val-
ues of BotCatch. The correlation and multi-feedback
algorithms contain several parameters, including
˛, ˇ, � , init_limit, �, and the final threshold � . These
parameters are vital to our prototype, and well-selected
values can significantly improve the detection approach.

We used four different experiments to find the best val-
ues for each parameter. In each experiment, we supposed
that other parameters are appropriate and have no influence
on the final detection result. Because our approach uses
feedback mechanisms, the initial submission order will
have an impact on the approach. We generated 10 different
file submission orders using randomized algorithm. Benign
files and bots were submitted randomly to BotCatch.

5.4.1. Parameter 1: init_limit.

Parameter init_limit in the multi-feedback algorithm is
the maximum number of parameters for first time training.
It affects the detection rate of the initial stage and the
speed at which stability is achieved. In this experiment,
we set other parameters to appropriate values, such as ˛ =
0.8, ˇ = 1–˛, � = 0.2, � = 0.7, and � = 0.5. We evaluated
init_limit for values between 10 and 100 with an incremen-
tal step of 10. For each init_limit value, we evaluated 10
different submission orders and used the maximum, mean,
and minimum values.

960 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(a)

init_limit = 10
init_limit = 20
init_limit = 30
init_limit = 40
init_limit = 50
init_limit = 60
init_limit = 70
init_limit = 80
init_limit = 90
init_limit = 100

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

init_limit Value

A
U

C
 V

al
ue

(b)

max

mean

min

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sample Numbers

F
al

se
 N

eg
at

iv
e

R
at

e

(c)

init_limit = 30
init_limit = 40
init_limit = 50
init_limit = 60

Figure 3. Detection rate with different init_limit value.

Table IV. Area under the curve values and retrain times of
different init_limit.

init_limit Max Mean Min Times

10 0.988 0.883 0.487 23
20 0.988 0.934 0.487 20
30 0.987 0.986 0.983 18
40 0.989 0.987 0.983 16
50 0.988 0.986 0.984 15
60 0.990 0.987 0.983 14
70 0.988 0.986 0.982 13
80 0.988 0.986 0.981 13
90 0.989 0.986 0.981 12
100 0.993 0.987 0.981 12

Figure 3(a) presents ROCs with different init_limit val-
ues. Based on ROC, we also calculated maximum, mean,
and minimum AUC values, as shown in Figure 3(b). These
figures show that init_limit = 10, 20 has the lowest AUC
value, while others all have almost the same curve. Note
also that AUC values for init_limit values above 60 drop
very little. The specific AUC values are shown in Table IV.
For init_limit values above 30, mean AUC values are
almost the same. We are more concerned about minimum
values than maximum values. Above init_limit values of
60, the minimum AUC values drop a little. In this way, we
first eliminate the values below 30 and above 60.

Because FP rates are almost 0%, we present a more
detailed run-time FN rate for init_limit values from 30 to
60 in Figure 3(c). We divide the figure into three stages:
initial stage, middle stage, and final stage. The initial stage
includes samples 0 to 200, in which BotCatch relies more
on signature detection than behavior detection. In the mid-
dle stage, from samples 201 to 500, BotCatch is set to
improve stability and accuracy. In the final stage, BotCatch
gradually becomes both stable and accurate. We set two
metrics to evaluate them: (i) stability in the initial stage and
(ii) increases in stability and accuracy. In the initial stage,
an init_limit value of 40 resulted in high fluctuation, but
values 50 and 60 provide better performance. In the middle
stage, values of 40 and 60 are more stable than others and
become more stable faster. In the final stage, all init_limit
values reached a stable state with a low detection rate.

Taking all these into consideration, we selected 60 as
the value of init_limit. Note that higher values may pro-
vide better performance, but 60 has more retrain procedure
than them as shown in Table IV. An init_limit value of 60
presents more obvious evolution details with a sufficient
detection rate in all stages.

5.4.2. Parameter 2: �.

Parameter � is a trigger threshold between the previous
total sample number n and added sample number m. When
m � �n, it triggers the behavior-retraining procedure and
modification of the correlation parameters. In this experi-
ment, we set init_limit to 60, and the other variables the
same as in the last experiment. We evaluated � from 0.1 to

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 961
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(a)

μ = 0.1
μ = 0.2
μ = 0.3
μ = 0.4
μ = 0.5
μ = 0.6
μ = 0.7
μ = 0.8
μ = 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

μ Value

A
U

C
 V

al
ue

(b)
max
mean
min

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sample Numbers

F
al

se
 N

eg
at

iv
e

R
at

e

(c)

μ = 0.1
μ = 0.2
μ = 0.3
μ = 0.4
μ = 0.5

Figure 4. Detection rate with different � value.

Table V. Area under the curve values and retrain times of
different �.

� Max Mean Min Times

0.1 0.989 0.986 0.982 26
0.2 0.990 0.987 0.983 14
0.3 0.988 0.986 0.983 10
0.4 0.989 0.986 0.983 8
0.5 0.989 0.986 0.984 7
0.6 0.989 0.986 0.983 6
0.7 0.989 0.986 0.982 5
0.8 0.988 0.986 0.983 5
0.9 0.988 0.986 0.983 4

0.9, with an increment step of 0.1. For every value, we also
evaluated 10 different submission orders.

Figure 4(a) presents ROCs with different � values—
they are almost the same. Based on ROCs, we also cal-
culated accurate maximum, mean, and minimum AUC
values, as shown in 4(b). Table V presents the accurate
AUC values. The values differ somewhat, 0.2 has a higher
maximum value, and 0.5 has a higher minimum value.
However, from these figures, we are not able to affirm
which one is better.

We thus present the more detailed run-time FN rates
in Figure 4(c). We also divide it into three stages: initial,
middle, and final. Obviously, 0.1 fluctuates too much, and
others all perform well enough in all three stages. They all
reach a stable and accurate final stage. Table V presents
the retrained times of different � values. A � value of 0.1
has up to 26 retraining times, which consumes too many
resources, while 0.4 to 0.9 have fewer than 8 and so can-
not present a detailed evolutionary procedure. Taking all of
these into consideration, we select 0.2 as the � value.

5.4.3. Parameter 3: ˛ and ˇ.

Parameters ˛ and ˇ significantly impact signature and
behavior detection by the correlation engine. They are
dynamic values and change at increments of 0.05. In this
experiment, we evaluated the initial values of these two
parameters. Note that ˇ = 1 – ˛, thus we evaluate ˛ val-
ues from 0.5 to 1.0. We set � to 0.2 and set the others as in
the last experiment. For each ˛ value, we also evaluate 10
different submission orders.

Figure 5(a) presents the ROCs with different ˛ values—
they are almost the same. Based on ROC, we also calculate
their accurate maximum, mean, and minimum AUC val-
ues, as shown in Figure 5(b). Table VI presents the accurate
AUC values. Their values differ little from these figures, so
we could not identify which one is better.

We then analyzed the detailed run-time FN rates as
shown in Figure 5(c). However, they also differed very lit-
tle. Recall that in the correlation algorithm, before first
time training, the final detection result is equal to the signa-
ture detection result. We set init_limit to 60. After training,
the correlation engine combines the two detection results
to generate the final result. At this time, behavior detection

962 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(a)

α = 0.5
α = 0.6
α = 0.7
α = 0.8
α = 0.9
α = 1

0.5 0.6 0.7 0.8 0.9 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α Value

A
U

C
 V

al
ue

(b)

max
mean
min

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sample Numbers

F
al

se
 N

eg
at

iv
e

R
at

e

(c)

α = 0.5
α = 0.6
α = 0.7
α = 0.8
α = 0.9
α = 1.0

Figure 5. Detection rate with different ˛ value.

Table VI. Area under the curve values of different ˛.

˛ Max Mean Min

0.5 0.990 0.987 0.983
0.6 0.990 0.987 0.983
0.7 0.990 0.987 0.983
0.8 0.990 0.986 0.982
0.9 0.990 0.986 0.981
1 0.989 0.986 0.980

provides sufficiently detailed results. Thus, the correlated
results for different ˛ values are almost the same. There
may be another reason that the samples are so similar, that
after first time training, the behavior detection engine is
able to classify most samples with high accuracy. In order
to provide more different samples as feedback, we select
an ˛ value of 0.8 and ˇ of 0.2. Although the difference is
not obvious in this experiment, we still select a high value
for ˛ to make our approach adapt to more samples.

5.4.4. Parameter 4: � and � .

Parameter � is the final threshold for determining
whether a suspicious file is malicious or benign. Parame-
ter � is another threshold when max(s, b) � � and thus
w = max(s, b). We only evaluate � and set � greater than
� . In the correlation engine, � goes when either the signa-
ture or behavior detection value, but not both, is very high.
For example, if a novel bot is submitted to BotCatch, sig-
nature detection returns 0 or a very low value, because its
signature has not yet been stored. However, the behavior
detection engine may return a rather high value, and the
correlation result may be lower than � . In this situation,
BotCatch generates a FN. However, if � is considered, the
novel bot will be detected as malicious. Thus, we believe a
value in [� , 1] is appropriate. In evaluating � , we set other
parameters as described earlier. We evaluate � from 0.4 to
0.7 with a step of 0.05.

Figure 6(a) presents the FN and FP rates of BotCatch
with different � values. FP rates are all 0 except for a �
of 0.55, which also has a rather low value. FN rates also
vary a little, remaining between 0.03 and 0.04. Figure 6(b)
presents more detailed run-time FN rates, which are also
very similar. The similarities between them are also rather
high. The two diagrams do not identify a clearly superior
value—all � values yielded precise detection results. We
selected 0.5 as the � value and 0.7 as the � value.

5.5. Experiment results

This section provides our experiment results when using
well-defined parameters. We first establish the benchmark
that we used for comparison, then provide the detection
results.

5.5.1. Benchmark establishment.

Because our prototype leverages a multi-feedback
mechanism to correlate signature-based and behavior-

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 963
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

0.4 0.45 0.5 0.55 0.6 0.65
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

θ Value

D
et

ec
tio

n
R

at
e

(a)

False Positive Rate
False Negative Rate

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sample Numbers

F
al

se
 N

eg
at

iv
e

R
at

e

(b)

θ = 0.40
θ = 0.45
θ = 0.50
θ = 0.55
θ = 0.60
θ = 0.65
θ = 0.70

Figure 6. Detection rate with different � value.

Table VII. Detection results of benchmark approaches.

TP TN FP FN

Signature 586 150 0 50
Behavior 626 125 25 10
SVM correlation 623 137 13 13

TP, true positive; TN, true negative; FP, false positive;

FN, false negative; SVM, support vector machine.

based bot detection, we use signature detection results,
behavior detection results, and SVM [36] correlation
results as benchmarks.

In evaluating signature detection results, we use
the detection results of the signature-analysis module
described in Section 3.2.2. We submit all 786 samples to
signature-analysis module and compare the results with
the same threshold � to determine whether each sample
was malicious or benign. After that, we compared signa-
ture detection results with the real results to generate the
final signature detection results. Table VII presents the final
signature detection results.

Table VIII. Detection results of different order.

Order TP TN FP FN

1 611 150 0 25
2 613 150 0 23
3 614 150 0 22
4 615 150 0 21
5 612 150 0 24
6 611 150 0 25
7 612 150 0 24
8 615 150 0 21
9 614 150 0 22
10 613 150 0 23
Mean 613 150 0 23

TP, true positive; TN, true negative; FP,

false positive; FN, false negative.

In evaluating behavior detection results, we employed
machine learning classifiers using LIBSVM [36]. We use
a fivefold cross-validation model to evaluate it. We used
cross-validation (a technique for protecting against over-
fitting of predictive models) to mitigate possible biases
in the data. As a side benefit, cross-validation yields far
more statistical data from a given dataset. In fivefold
cross-validation specifically, the whole dataset is randomly
divided into five groups and the classifier is re-estimated
five times, holding back a different group each time. The
overall detection result is the mean result of the five clas-
sifiers. We randomly divide all 786 samples (including
636 bot and 150 benign samples) into five groups. In
each group, there were 30 benign samples. The first four
groups had 127 bot samples and the last had 128 samples.
Table VII presents the final behavior detection results.

In evaluating SVM correlation, the signature and behav-
ior detection results are the same as those of BotCatch with
no feedback mechanism and the SVM correlation algo-
rithm. We first use fivefold cross-validation to generate
posterior classification probability and then use fivefold
cross-validation to correlate signature detection results and
posterior classification probabilities. Table VII presents the
final SVM correlation detection results.

5.5.2. Detection results.

After setting appropriate parameter values and estab-
lishing a benchmark, we also randomly generated 10
different file submission orders and submitted them to
BotCatch. We utilized several metrics to evaluate them.

Table VIII summaries TP, TN, FP, and FN values of
different orders. They all have 0 FPs, which means that
BotCatch is able to detect all benign samples. In order
to compare our approach with benchmark approaches, we
used different metrics to evaluate them and present the
results in Table IX. From the perspective of FP rate, the
signature approach and BotCatch have a 0% FP rate, while
behavior and SVM correlation approaches have 16.67%
and 8.67% FP rate, respectively. In contrast, the signature
approach and BotCatch have higher FN rates. We were

964 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

Table IX. Detection results of different evaluation metrics.

FP rate (%) FN rate (%) F-measure Accuracy (%)

Signature 0 7.86 0.959 93.6
Behavior 16.67 1.57 0.973 95.5
SVM correlation 8.67 2.04 0.98 96.7
BotCatch 0 3.62 0.982 97.1

TP, true positive; TN, true negative; FP, false positive; FN, false negative; SVM, support vector

machine.

Figure 7. F-measure and accuracy.

not able to draw conclusions from FP and FN rate, so we
gathered comprehensive F-measure and accuracy evalua-
tion metrics. Figure 7 presents a comparison of F-measure
and accuracy values. By comparing Table IX and Figure 7,
we can identify that SVM correlation and BotCatch pro-
vide better detection results than the signature and behavior
approaches, with BotCatch being a little better than SVM
correlation.

Note that our approach is adaptive to samples, which
means that it can gradually improve as the number of sam-
ples increases. To prove this, we present the more detailed
run-time F-measure and accuracy results in Figure 8.
In these figures, we compare BotCatch to the signa-
ture, behavior, and SVM correlation approaches. We also
present mean BotCatch detection results to clearly show
the evolution as the number of samples increases. We
divide the picture into three stages: the initial stage is from
the first sample to sample 200. The middle stage is from
the sample 201 to 500, and the remaining samples are in
the final stage.

F-measure is presented in Figure 8(a). In the initial
stage, BotCatch is not stable; its F-measure values fluctu-
ate around the values of the behavior and SVM correlation
approaches. In this stage, BotCatch relies more on sig-
nature detection results, while still providing better result
than pure signature detection. During the middle stage, the
BotCatch curve fluctuates between the behavior and SVM
correlation curves. As the number of samples increases,

0 200 400 600 800
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Sample Number

F
−

m
ea

su
re

(a)

Signature
Behavior
SVM Correlation
Mean BotCatch
Real−time BotCatch

0 200 400 600 800
90

91

92

93

94

95

96

97

98

99

100

Sample Number

A
cc

ur
ac

y(
%

)

(b)

Signature
Behavior
SVM Correlation
Mean BotCatch
Real−time BotCatch

Figure 8. Real-time F-measure and accuracy.

behavior detection is given greater weight than in the ini-
tial stage. BotCatch starts to provide more stable and better
results than behavior detection, although it still performs
worse than SVM correlation. At the end of middle stage,
BotCatch has triggered several cycles of retraining, and it
has reached a stable and robust state. In the final stage, the
curve of BotCatch is substantially above that of SVM cor-
relation. In this stage, BotCatch reaches a 0.991 F-measure
value. The accuracy curve in Figure 8(b) resembles the
F-measure curve.

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 965
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

Taking the aforementioned results into consideration,
we can draw several conclusions: (i) The correlation algo-
rithm in our approach is efficient and effective at com-
bining signature and behavior detection results. (ii) The
multi-feedback mechanism makes our approach adaptive
to samples, allowing it to gradually become more robust
and accurate. (iii) Other correlation algorithms, such as
SVM, are also effective; however, our correlation algo-
rithm with its multi-feedback mechanism provides better
detection results.

5.6. Performance overhead

We use the top command to monitor CPU and memory
usage every other second. We first record about 2 h during
which only the operating system is running without any
other software. Then, we record about another 2 h, dur-
ing which our prototype is being used normally. Figure 9
shows a summary of the CPU and memory usage.

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

Time(s)

C
P

U
 U

sa
ge

 R
at

e(
%

)

(a)

System
BotCatch

0 1000 2000 3000 4000 5000 6000 7000

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time(s)

M
em

or
y

U
sa

ge
 (

G
B

)

(b)

System
BotCatch

Figure 9. Performance overhead.

At the beginning of the diagram in Figure 9(a), Bot-
Catch and the operating system both provide a CPU usage
rate of about 10%. This is because that human operation
and the starting of the program consume few resources.
They both then reduce their usage at different rates. After
2000 s, system CPU usage stabilizes at 2.4%. However,
BotCatch usage declines only from 10.7% to 8.6% in
7200 s. CPU usage by BotCatch remains fairly stable.

Unlike CPU usage, memory usage is unstable. The
memory of the operating system remains at about 1.3 GB.
Every peak in the BotCatch curve occurs when BotCatch
analyzes a suspicious sample. Note that we distribute
512 MB for every virtual machine, thus the apex reaches
above 1.8 GB. When BotCatch is quiet, the memory usage
is between 1.3 and 1.4 GB, which consumes only a bit
more resources than the pure operating system.

Taking the preceding text into consideration, when Bot-
Catch is quietly running, it consumes few resources. How-
ever, when BotCatch is analyzing suspicious samples, the
overhead that it incurs increases rapidly. This is a common
challenge for virtual machines and emulation methods.
Although the overhead of our approach is high, there is no
risk in a virtual machine, and our prototype can achieve
a high detection accuracy. We believe that the sacrifice of
incurring a slightly greater overhead is a reasonable price
for high detection accuracy.

6. DISCUSSION

No detection approach is perfect. Our BotCatch detection
approach is no exception. For example, an advanced bot
may detect whether it is running in a virtual machine before
performing malicious activities. This is a common chal-
lenge for all virtual machine based detection approaches.
There is also an agent running in the virtual host, which
cleverly designed bots can detect. BotCatch can address
this issue, because our approach combines signature and
behavior detection. Although cleverly designed bots can
evade behavior detection, signature detection is still effec-
tive. Thus, BotCatch can still detect these kinds of bots
with a well-designed correlation engine.

As the first evolving tendency of bot and botnet illus-
trates, existing bots utilize advanced hidden techniques to
evade detection, such as dividing one process into sev-
eral, using covert channels to communicate. These hidden
techniques are effective to evade some behavior-based bot
detection approaches. For example, by dividing one pro-
cess into several can effectively evade approaches based on
single process. However, BotCatch monitors all the behav-
iors to provide a comprehensive detection result. In this
way, BotCatch can steal some of these advanced hidden
techniques.

Another limitation of virtual machine based detection
is that suspicious files run on the virtual machine for only
several minutes. During this period, many bot samples can
take a significant number of malicious actions. But some
cleverly designed bots may use delay mechanisms to evade

966 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

detection. For example, bots can sleep for random numbers
of seconds between continuous malicious behaviors. Some
bot programs may be terminated before they finish the life
cycle of the botnet. This can confound our behavior detec-
tion approach, although it has no influence on signature
analysis. Thus, our approach is still able to detect them.

Although our approach mainly focuses on bot detection,
it is able to detect other malwares with specific behaviors
and parameters. However, existing malware also utilize
different mechanisms to evade detection. Metamorphism
is a representative mechanism that changes the internal
structure of software while maintaining its functionality
[37,38]. Metamorphism is not generally applied to botnets,
it still represents a great challenge to signature detec-
tion. Although a cleverly designed bot can evade signature
detection, it still performs intrinsically malicious behaviors
that can be detected by the behavior detection module. By
combining signature-based and behavior-based detection,
BotCatch can still detect them.

The 0% FP rates of both the signature approach and
BotCatch are remarkable. However, the benign samples
that we used may slightly bias the results. For example,
most of our benign samples are pieces of well-known soft-
ware, so their signatures are definitely not in the malicious
signature database. For another reason, the benign samples
all quite similar to each other but different from the mali-
cious samples. In our future work, we would like to collect
benign samples from less well-known software, in order to
evaluate our approach more accurately.

In regard to system overhead, besides the CPU and
memory usage of BotCatch, there is another important
evaluation metric—the extra time required to execute the
code. This metric reflects the efficiency of the monitor or
hook mechanism. However, this evaluation metric is not
easy to quantify in our experiment. We will try to quantify
this metric in our future work.

Our approach uses a multi-feedback mechanism and
combines signature and behavior detection results. How-
ever, the feature vector of behavior analysis is constant.
These features may not work well with some new gen-
eration bots, such as social bots [39,40], and Tor-based
botnets [14,15]. These new generation bots hide their mali-
cious behaviors in ways that make it difficult to detect.
Our approach may also be unable to detect such novel
bots. Creating an approach that identifies these kinds of
bots is the primary goal of our major future work. We
would like to perform this research from several perspec-
tives: (i) We want to deeply analyze the specific malicious
behaviors of new generation bots, especially their host
behaviors. In addition to classifying novel bots, we can
also classify conventional bots into different types with
different host behaviors. (ii) We want to update the fea-
ture vector with these new behaviors and to provide more
detailed detection results that contain more than a classifi-
cation of samples as bot or benign. For example, we could
have results that include detailed bot classification infor-
mation. (iii) We also want to optimize the multi-feedback
engine with well-designed parameters. We can also try

to utilize a genetic algorithm to adapt our approach to
different bots.

7. CONCLUSION

We propose a multi-feedback approach, BotCatch, to
detect bots effectively and efficiently on a host by lever-
age of a combination of signature and behavior. BotCatch
primarily consists of five modules: an analysis engine,
a signature-analysis module, a behavior-analysis mod-
ule, a correlation engine, and a multi-feedback module.
The analysis engine assigns each suspicious file to the
signature-analysis and behavior-analysis engines. The two
analysis engines analyze the file and generate signature
and behavior detection results. Then, the correlation engine
correlates the two detection results to generate the final
detection result. The multi-feedback module then opti-
mizes the signature-analysis module, behavior-analysis
module, and correlation engine using a multi-feedback
algorithm. In order to evaluate our approach, we collected
636 bot and 150 benign samples to test. Besides providing
the final detection result, we also analyzed how different
parameters affected those results. After defining parame-
ters effectively, we compared BotCatch results to those of
signature detection, behavior detection, and SVM correla-
tion. The results indicate the following: (i) The correlation
algorithm in our approach effectively combines signature
and behavior detection results. (ii) The multi-feedback
mechanism adapts our approach to samples and gradu-
ally makes BotCatch more robust and accurate. (iii) Other
correlation algorithms, such as SVM, are also effective;
however, our correlation algorithm with its multi-feedback
mechanism provided the best detection results.

ACKNOWLEDGEMENTS

We gratefully acknowledge the funding from National
Natural Science Foundation of China under grant no.
61170265, Fundamental Research Fund of Jilin University
under grant no. 201103253, and our anonymous reviewers
for their helpful comments.

REFERENCES
1. Abdullah RS, Abdollah MF, Noh ZA, Mas’ ud MZ,

Selamat SR, Yusof R. Revealing the criterion on Bot-
net detection technique. IJCSI International Journal of
Computer Science Issues 2013; 10(2): 208–215.

2. Rodríguez-Gómez RA, Maciá-Fernández G, García-
Teodoro P. Survey and taxonomy of botnet research
through life-cycle. ACM Computing Surveys (CSUR)
2013; 45(4): 45.

3. Silva SSC, Silva RMP, Pinto RCG, Salles RM.
Botnets: a survey. Computer Networks 2012; 57(2):
378–403.

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 967
DOI: 10.1002/sec

BotCatch: leveraging signature and behavior for bot detection Y. Ji et al.

4. Goebel J, Rishi TH. Identify bot contaminated hosts
by IRC nickname evaluation, Proceedings of the
first conference on First Workshop on Hot Topics
in Understanding Botnets, Cambridge, MA, 2007;
8–8.

5. Park Y, Reeves DS. Identification of bot commands
by run-time execution monitoring, Computer Security
Applications Conference, 2009. ACSAC’09. Annual,
Honolulu, Hawaii, 2009; 321–330. IEEE.

6. Kolbitsch C, Comparetti PM, Kruegel C, Kirda E,
Zhou X-Y, Wang XF. Effective and efficient malware
detection at the end host, USENIX Security Sympo-
sium, Montreal, Canada, 2009; 351–366.

7. Shin S, Xu Z, Gu G. EFFORT: efficient and effective
bot malware detection, Proceedings IEEE INFOCOM,
2012, Orlando, Florida USA, 2012; 2846–2850.

8. Ma W, Duan P, Liu S, Gu G, Liu J-C. Shadow
attacks: automatically evading system-call-behavior
based malware detection. Journal in Computer Virol-
ogy 2012; 8(1-2): 1–13.

9. Zander S, Armitage GJ, Branch P. A survey of covert
channels and countermeasures in computer network
protocols. IEEE Communications Surveys and Tutori-
als 2007; 9(1-4): 44–57.

10. Baysa D, Low RM, Stamp M. Structural entropy and
metamorphic malware. Journal of Computer Virology
and Hacking Techniques 2013; 9(4): 179–192.

11. Shanmugam G, Low RM, Stamp M. Simple substi-
tution distance and metamorphic detection. Journal
of Computer Virology and Hacking Techniques 2013;
9(3): 159–170.

12. Boshmaf Y, Muslukhov I, Beznosov K, Ripeanu M.
Design and analysis of a social botnet. Computer
Networks 2013; 57(2): 556–578.

13. Brito F, Petiz I, Salvador P, Nogueira A, Rocha E.
Detecting social-network bots based on multiscale
behavioral analysis, SECURWARE 2013, The Seventh
International Conference on Emerging Security Infor-
mation, Systems and Technologies, Barcelona, Spain,
2013; 81–85.

14. Johnson A, Wacek C, Jansen R, Sherr M, Syverson P.
Users get routed: traffic correlation on Tor by realis-
tic adversaries, Proceedings of the 2013 ACM SIGSAC
conference on Computer & Communications Security,
Berlin, Germany, 2013; 337–348. ACM.

15. Biryukov A, Pustogarov I, Weinmann R. Trawl-
ing for tor hidden services: detection, measurement,
deanonymization, 2013 IEEE Symposium on Security
and Privacy (SP), San Francisco, California, 2013;
80–94. IEEE.

16. Hsiao S-W, Chen Y-N, Sun YS, Chen MC. Combining
dynamic passive analysis and active fingerprinting for
effective bot malware detection in virtualized environ-

ments, The 7th International Conference on Network
and System Security, Madrid, Spain, Springer, Berlin
Heidelberg, 2013; 699–706.

17. Kugisaki Y, Kasahara Y, Hori Y, Sakurai K. Bot
detection based on traffic analysis, The 2007 Inter-
national Conference on Intelligent Pervasive Comput-
ing, 2007. IPC, Jeju Island, Korea, 2007; 303–306.
IEEE.

18. Stinson E, Mitchell JC. Characterizing bots’ remote
control behavior, The 4th International Conference on
Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, Lucerne, Switzerland, 2007, Springer
Berlin Heidelberg, 2007; 89–108.

19. Liu L, Chen S, Yan G, Zhang Z. Bottracer: execution-
based bot-like malware detection, Information Secu-
rity, 11th International Conference, Taipei, Taiwan,
Springer, Berlin Heidelberg, 2008; 97–113.

20. Martignoni L, Stinson E, Fredrikson M, Jha S,
Mitchell JC. A layered architecture for detecting mali-
cious behaviors, Recent Advances in Intrusion Detec-
tion, 11th International Symposium, Cambridge, MA,
USA, Springer, Berlin Heidelberg, 2008; 78–97.

21. Jacob G, Hund R, Kruegel C, Holz T. Jackstraws:
picking command and control connections from bot
traffic, USENIX Security Symposium, San Francisco,
CA, USA, 2011.

22. Zeng Y. On detection of current and next-generation
botnets. PhD thesis, The University of Michigan,
2012.

23. Elhadi AAE, Maarof MA, Osman AH. Malware detec-
tion based on hybrid signature behaviour application
programming interface call graph. American Journal
of Applied Sciences 2012; 9(3): 283.

24. Guo H, Pang J, Zhang Y, Yue F, Zhao R. Hero: a
novel malware detection framework based on binary
translation, 2010 IEEE International Conference on
Intelligent Computing and Intelligent Systems (ICIS),
Xiamen, China, 2010; 411–415. IEEE.

25. VirusTotal. https://www.virustotal.com/. accessd Febu-
rary 2014.

26. Binsalleeh H, Ormerod T, Boukhtouta A, Sinha P,
Youssef A, Debbabi M, Wang L. On the analysis
of the zeus botnet crimeware toolkit, 2010 Eighth
Annual International Conference on Privacy Secu-
rity and Trust (PST), Ottawa, Ontario, Canada, 2010;
31–38. IEEE.

27. Lin H-T, Lin C-J, Weng RC. A note on Platts proba-
bilistic outputs for support vector machines. Machine
Learning 2007; 68(3): 267–276.

28. Chen F, Ranjan S, Tan PN. Detecting bots via
incremental LS-SVM learning with dynamic feature
adaptation, Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge discovery and

968 Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

https://www.virustotal.com/

Y. Ji et al. BotCatch: leveraging signature and behavior for bot detection

Data Mining, San Diego, CA, USA, 2011; 386–394.
ACM.

29. Kim TK, Stenger B, Kittler J, Cipolla R. Incremental
linear discriminant analysis using sufficient spanning
sets and its applications. International Journal of Com-
puter Vision 2011; 91(2): 216–232.

30. Automated malware analysis—Cuckoo Sandbox.
http://www.cuckoosandbox.org/. accessed February
2014.

31. Open malware—community malicious code research
and analysis. http://www.offensivecomputing.net/.
accessed February 2014.

32. Sysinternals live. http://live.sysinternals.com/, accessed
February 2014.

33. Davis J, Goadrich M. The relationship between
precision-recall and ROC curves, Proceedings of
the 23rd International Conference on Machine
Learning, Pittsburgh, Pennsylvania, USA, 2006;
233–240. ACM.

34. Wang D, Navathe SB, Liu L, Irani D, Tamersoy A,
Pu C. Click traffic analysis of short URL spam on
twitter, 2013 9th International Conference on Col-
laborative Computing: Networking, Applications and

Worksharing (Collaboratecom), Austin, TX, USA,
2013; 250–259. IEEE.

35. Accuracy and precision - Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/wiki/Accuracy_and_
precision [Accessed February 2014].

36. LIBSVM—a library for support vector machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. accessed
February 2014.

37. Lin D, Stamp M. Hunting for undetectable metamor-
phic viruses. Journal in computer virology 2011; 7(3):
201–214.

38. Wong W, Stamp M. Hunting for metamorphic
engines. Journal in Computer Virology 2006; 2 (3):
211–229.

39. Burghouwt P, Spruit M, Sips H. Towards detection
of botnet communication through social media by
monitoring user activity, Information Systems Security,
7th International Conference, Kolkata, India, Springer,
Berlin Heidelberg, 2011; 131–143.

40. Singh A, Toderici AH, Ross K, Stamp M. Social
networking for botnet command and control. Interna-
tional Journal of Computer Network & Information
Security 2013; 5(6).

Security Comm. Networks 2015; 8:952–969 © 2014 John Wiley & Sons, Ltd. 969
DOI: 10.1002/sec

http://www.cuckoosandbox.org/
http://www.offensivecomputing.net/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

	BotCatch: leveraging signature and behavior for bot detection
	INTRODUCTION
	RELATED WORK
	Signature-based bot detection
	Behavior-based bot detection
	Combined signature-based and behavior-based bot detection

	SYSTEM OVERVIEW
	System architecture
	Methodology
	M1: analysis engine
	M2: signature-analysis module
	Network scanner
	Signature-analysis engine

	M3: behavior-analysis module
	Host behavior monitor
	Host behavior analysis

	M4: correlation engine

	MULTI-FEEDBACK MECHANISM
	Optimizing signature analysis
	Optimizing behavior analysis
	Maintaining the behavior sample set
	Triggering the learning procedure

	Optimizing correlation engine

	EXPERIMENT
	System implementation
	Data collection
	Evaluation metrics
	Impact of different parameters
	Parameter 1: init_limit
	Parameter 2:
	Parameter 3: and
	Parameter 4: and

	Experiment results
	Benchmark establishment
	Detection results

	Performance overhead

	DISCUSSION
	CONCLUSION

