
Research Article
Overhead Analysis and Evaluation of Approaches to
Host-Based Bot Detection

Yuede Ji,1,2 Qiang Li,1,2 Yukun He,1,2 and Dong Guo1,2

1College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China
2Symbol Computation and Knowledge Engineer of Ministry of Education, Jilin University, Changchun, Jilin 130012, China

Correspondence should be addressed to Qiang Li; li qiang@jlu.edu.cn

Received 26 January 2015; Revised 4 May 2015; Accepted 4 May 2015

Academic Editor: José Molina

Copyright © 2015 Yuede Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Host-based bot detection approaches discover malicious bot processes by signature comparison or behavior analysis. Existing
approaches have low performance which has become a bottleneck blocking its wider deployment. Among the impact factors of
performance, overhead is a crucial one. Many host-based bot detection approaches with high detection accuracy are not used
practically because of their high overheads. For the development of host-based bot detection, unveiling the factors affecting the
overhead is very significant. First, this paper classifies the typical approaches of host-based bot detection proposed in recent
years by several metrics, information sources, interception mechanisms on host, intercepted system calls, trigger mechanisms, and
correlation engine. Second, based on our analyses of aims and implementations of detection approaches, we identify three major
factors affecting the overhead of approaches, namely, interceptionmechanism on host, type, and number of system calls intercepted
and correlation engine. Third, we evaluate the influence of these factors via various experiments on real systems. Finally, based on
the experiments, we propose several suggestions which are able to significantly decrease the overhead of host-based bot detection
approaches.

1. Introduction

Malicious code (virus, Trojan, worm, spyware, botnet, etc.)
has become a serious threat to the Internet. As an important
class of malicious code, bot and botnet have a more hidden
attack mode thus cause more serious threats [1] compared
with other malicious codes. Bot is an instance of malicious
code running on the victim host. It can hide itself, steal
user privacy, and launch other malicious activities. A large
scale of compromised hosts forms a botnet through the
Command and Control channel (i.e., IRC, HTTP, P2P, etc.)
under the control of a botmaster. Botmasters leverage botnets
to conduct various cybercrimes such as spreading attack code
and command,DDoS attacks, spamming, deploying spyware,
and phishing. Botnet has become themajor platform formost
online criminal activities.

Up to now, a large number of researches have been
carried on regarding the detection and defense of bot and
botnet; however there still exist various challenges. Since bot

and botnet can hide in the system, update attack mecha-
nism to bypass the conventional detection techniques, and
change communications from centralization to distribution,
the stimulus of economic benefits and modularization of
bot code promote the study of new attack methods against
detection techniques and accelerate the generation of custom
botnet software and its variants. Consequently, eliminating
the huge threat caused by bot and botnet to end-host and
network has become one of the most urgent tasks for
researchers.

According to the execution location, existing bot and
botnet detection approaches can be divided into two cate-
gories, network-based approaches and host-based. Network-
based detection approaches only concern network traffic.
The effectiveness of these approaches will be reduced when
communication protocol of botnet changes and communi-
cation content is encrypted, or they are in a high-speed and
large-scale network. In addition, these approaches cannot
completely eliminate the threats of botnet, and the evidence

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 524627, 17 pages
http://dx.doi.org/10.1155/2015/524627

http://dx.doi.org/10.1155/2015/524627

2 International Journal of Distributed Sensor Networks

of bot and botnet is not easy to keep.Host-based bot detection
is more effective for protecting host security. It can monitor
the behavior of suspicious process on the host even without
prior knowledge. It can also capture the attack information
before the botnet traffic being encrypted. Compared with
network-based botnet detection, it can discovermore insights
of unknown bots especially when there is only a single bot in
a local network. And, more importantly, we may completely
eliminate the bot if we successfully detect it on end-host.

Host-based bot detection approaches aremainly classified
into 5 categories: (1) capture the flow of infected host and
determinewhether it is a bot host according to predefined sig-
natures of bots’ various stages, such as BotHunter [2].The dis-
advantage of this approach is that it cannot detect unknown
bots. (2)Analyze the binary codes of suspicious programs and
detect whether it is a bot by extracting features and sequences
of code [3]. (3) Analyze abnormal behaviors of host, such as
running status of operating system and suspicious processes,
activities launched by bot instance, sequences of API calls.
Based on these analyses, some approaches determinewhether
it is bot host through statistical anomaly, artificial immune
systems, or correlation algorithms [4–7]. (4) Discover bot
host through monitoring network connection and memory
status, by manual processing and network tools [8]. (5) Use
traditional host antivirus software. Antivirus software needs
accurate malicious code library; however a bot can easily
update itself through botnet to evade signature inspection.
According to statistics [7], even with the latest antivirus
software, there are still 22.97% hosts infected by malicious
code.

However, some common challenges also exist in these
host-based detection approaches: (1) the effectiveness
of existing abnormal detection and behavior detection
approaches is not enough to detect unknown bots. In most
cases, a lot of prior knowledge needs to be trained and
defined in this class of approaches; thus both false positive
rate and false negative rate will increase when new bots
occur. (2) Bot detection is a multifaceted and multiphased
process. Due to the lack of information of local network
anomaly and other victims’ similar behaviors, misjudgment
often occurs when detecting bots in a single host. (3)
Detection approaches based on the abnormal behaviors
usually intercept a large number of system calls and launch
complex real-time or sliding-window calculation and thus
consume a large portion of CPU and memory resource. In
particular when many benign programs are running, there
is a significant increment of host overhead which thus affects
users’ normal use. Accordingly, the overhead of host-based
bot detection approach has become a bottleneck blocking
its wider deployment. If we can reduce its overhead to an
acceptable level, it will greatly facilitate the development of
host-based bot detection approaches.

This paper studies the factors affecting the overhead of
host-based bot detection approaches and proposes appropri-
ate suggestions. The main contributions are stated as follows:

(1) We classify the typical approaches of host-based bot
detection proposed in recent years by several metrics:
key assumptions, host environments, information

sources, interception mechanism on host, classifi-
cation of behavior and alert, ways of constructing
databases, triggermechanism, and correlation engine.
We compare and analyze the characteristics of host-
based bot detection approaches through these met-
rics.

(2) We make deep analyses of the aim and implementa-
tion of the detection approaches. We identify three
major factors affecting hosts’ overhead, namely, inter-
ception mechanism on host, type and number of
system calls intercepted, and correlation engine.

(3) We select four typical approaches to evaluate the
influence of these factors via various experiments on
real systems. We summarize and discuss the affecting
factors and suggestions based on our experimental
results. We discover that using Windows Hook or
Detours to intercept has a smaller impact on host
overhead, specially selected collection of system calls
such as Common API has a tolerant overhead, and
correlation engine should be carefully deployed and
optimized according to the characteristics of the
corresponding correlation algorithm.

The remainder of this paper is outlined as follows:
Section 2 classifies the typical approaches of host-based
bot detection proposed in recent years by several metrics.
Section 3 makes deep analyses of detection approaches’ aim
and implementation. Section 4 selects some typical detection
approaches to evaluate these factors via detailed real system
experiments. Section 5 discusses the limitations and future
works. Finally, Section 6 concludes the paper.

2. The Classification of Existing Approaches

Currently, primary host-based bot detection approaches
include (1) BotSwat [9], proposed by Stinson and Mitchell,
which can distinguish between bot behaviors and benign
programs through judging whether the input data of com-
mands executed in the host is received from the network.
(2) BotTracer [10], proposed by Liu et al., is to judge bot
infection from the three indispensable stages in the process
of bot attacking. (3) Martignoni uses hierarchical behavior
graphs [11, 12] to detect malicious behaviors. (4) BotTee [4],
proposed by Park and Reeves, extracts the suspicious system
call sequences to match with the bot command patterns.
(5) Kolbitsch et al. use intercepted system call sequences to
match malicious behavior graphs [13], and judge whether
the behavior is malicious based on the matching results.
(6) Al-Hammadi et al. use Dendritic Cell Algorithm (DCA)
[14, 15] for host-based bot detection to detect botnets on
host, based on the knowledge of Artificial Immune Systems
[16]. (7) Zeng et al. first propose the idea of combining
both network-level and host-level information to detect
botnets [5]. After combining host-level and network-level
information, they can find the infected hosts in Local Area
Network (LAN). (8) JACKSTRAWS [17], proposed by Jacob
et al., uses machine learning to identify C&C connection
accurately. (9) Shin et al. propose the EFFORT approach

International Journal of Distributed Sensor Networks 3

Information source

Interception mechanism

Intercepted system calls

Trigger mechanism

Correlation engine

Others

Figure 1: Evaluation metrics affecting host overhead.

[18], correlating multiple modules of a process to generate
the final result to determine whether it is infected. (10)
PeerPress [19], proposed by Xu et al., combines host-level and
network-level information to proactively detect P2Pmalware.
Host-level dynamic binary analysis automatically extracted
Malware Control Birthmarks (MCB) of P2P malwares. Then
network-level scanner probes the hosts in the network to
detect whether they are infected by P2P malwares.

To better view these approaches, especially the factors
related to host overhead, we propose 5 important evaluation
metrics to evaluate them.Thesemetrics have different impact
on the overhead of these approaches as shown in Figure 1.
Through a comparative analysis of these evaluation metrics,
we can have amore in-depth understanding of host-based bot
detection approaches and the factors affecting the overhead of
these approaches.

2.1. Classification Metric 1: Information Sources. There are 3
information sources: host, network, and host and network.
Studying the information sources can help us understand the
impact of them on bots detection better. In this paper, we
only discuss the approaches of host-based bot detection, so
network-based botnet detection is out of scope. In this case
there are 2 primary information sources: the host and the host
and network.

The approach of Zeng [5] combines host and network
information. The information on host is a feature vector
through monitoring registry, file system, and network stack,
while the information on network is a feature vector of the
network behaviors by analyzing the NetFlow of the edge
router in LAN. Then they combine the host and network
information through clustering and correlation to determine
which host is infected.

Other approaches use the internal information on hosts.
In the approach of Martignoni [11], the host information

refers to the information of users’ input and all running
processes in emulators, including malicious information and
benign information. The information of BotTee [4] is from
host and divided into two classes. One class is that, while gen-
erating templates, the information needed is the previously
detected bots’ behaviors on hosts.Theother class is that, while
detecting, the information comes from the running processes
on hosts, including both malicious and benign ones. In the
approach of Kolbitsch [13], the host information refers to the
system calls on hosts. They only concern about the system
calls that may be used to launch malicious activities; that
is, they only need malicious information. For Al-Hammadi’s
approach [14], the information source refers to the function
calls and system calls on hosts, including both benign and
malicious ones. In BotSwat [9], host information mainly
refers to abnormal system calls and users’ normal input on
hosts. It also includes network datamonitored on host, which
is used to judge the infected memory area. In BotTracer
[10], host information mainly refers to automatically started
processes’ information in virtualmachine, and it also includes
traffic information of inbound and outbound on hosts.
For JACKSTRAWS [17], the host information is malicious
system calls and traffic information. In EFFORT [18], the
information on hosts includes human operations and system
calls which focus on the suspicious processes, and it also
includes network connection information on hosts.

Only using host information, including processes infor-
mation, information of system call sequences, and network
connection information on host can effectively detect bots
on host. It can also terminate or kill the suspicious process.
However, this class of detection only focuses on one host,
neglecting other hosts’ information in LAN. Due to the fact
that bots are very easy to spread, it is highly possible that there
are many infected hosts at the same time in LAN. So utilizing
network information can make detection more accurate. The
approach of Zeng [5], which combines host and network
information, also has some disadvantages. For instance, the
hosts focus on statistics, so the bot process cannot be found.
What is more, even if the final detection result shows that
the host has been infected, we can do nothing towards the
bots. However, this approach is the first one to combine
host information and network information. The information
selected and correlation methods are all in an exploration
stage. As a result, whether it is more effective to detect bots
and whether we can deal with the bot’s process on hosts will
be our future concern.

2.2. Classification Metric 2: Interception Mechanisms on Host.
Host-based bot detection approaches use interception mech-
anism to obtain information on host. They get information
about all aspects of hosts through intercepting preselected
system calls. The difference between interception mecha-
nisms reflects in the realization of programs. Some use Win-
dows Hook to intercept; some use third-party libraries, such
as Detours [20] and Deviare API [21], to intercept; others use
tools which have been packaged like Process Monitor [22] to
intercept.Themajor difference is reflected in the effectiveness
of interception and the impact on host overhead. Therefore,

4 International Journal of Distributed Sensor Networks

Table 1: Interception mechanisms on host.

Approach BotSwat BotTracer Martignoni BotTee Kolbitsch Al-Hammadi Yuanyuan
Zeng

JACK-
STRAWS EFFORT

Interception
mechanism Detours Detours Windows

Hook
Deviare
API Anubis APITrace Process

Monitor Anubis Windows Hook

System calls
intercepted

Up to
2,200API
functions

A limited
number of
Win32

functions

sysenter,
sysexit

Common
API

A subset of
interesting
system
calls

Selected API
calls

All system
calls

Winsock
API

Windows
system calls

related to key-
board/mouse

events

it is very important to choose a reasonable interception
mechanism.

As shown in Table 1, BotSwat [9] uses Detours library
provided by Microsoft to intercept library calls and system
calls. BotTracer [10] also uses Detours library to intercept.
The approach of Martignoni [11] uses Windows Hook to
intercept. BotTee [4] usesDeviareAPI [21] to intercept system
calls on host. Kolbitsch’s [13] approach uses dynamicmalware
analysis environment Anubis [23] to monitor system calls.
In the approach of Al-Hammadi [14], it uses APITrace [24]
to intercept. The approach of Zeng [5] uses an approach
similar to Process Monitor [22] to intercept system calls
at registry, file system, and network stack on hosts. The
approach of JACKSTRAWS [17] uses Anubis to monitor
network behaviors. EFFORT [18] uses Windows Hook to
intercept system calls.

2.3. Classification Metric 3: Intercepted System Calls.
Although all the approaches intercept system calls, the type
and number of intercepted system calls are different from
each other. As shown in Table 1, BotSwat [9] intercepts
library calls and system calls.They intercept up to 2,200 APIs
and it has a great impact on host overhead. BotTracer [10]
intercepts system calls related to memory and disk access
because information harvesting/dispersion have to access
the disk or memory. The approach of Martignoni [11] hooks
the sysenter instruction, which is the begining of kernel calls,
and the sysexit instruction, which is the end of kernel calls,
so that the emulator can pass the monitored event stream to
behavior matcher in real time. This approach only intercepts
two instructions; thus the overhead is small. BotTee [4]
intercepts a subset of all system calls called Common
API. System calls in this subset are indispensable for the
execution of bots. Kolbitsch’s [13] approach intercepts a
subset of system calls which can be used to execute malicious
activities. These system calls are relevant to security and
they are in the bottom of behavior graphs. Al-Hammadi
[14] intercepts selected system calls to generate log files.
The approach of Zeng [5] intercepts system calls at registry,
file system, and network stack on hosts. The approach of
JACKSTRAWS [17] hooks Winsock API to obtain the data
from network. EFFORT [18] hooks Windows system calls
related to keyboard/mouse events.

Interception mechanism plays an important role in
obtaining host information; however the type and number of
intercepted system calls are different. Currently, intercepting

all system calls has a high impact on system overhead; thus
it is not suitable for present approaches. Consequently, under
the condition of not decreasing detection accuracy, most of
them just intercept several, a set or one class of system calls
to reduce the number of intercepted system calls.

2.4. Classification Metric 4: Trigger Mechanism. In order to
reduce the impact on host overhead, detection approaches do
not run all the modules in real time. Generally, there are one
or severalmonitormodules running in the system. If there are
accordant trigger events or system calls, the monitor module
will trigger the correlation engine to detect. Based on above
approaches, there are two information sources in trigger
processes: the information on host and the information on
network.

Some approaches [4, 9–11, 13, 14, 17, 18] trigger the
detection approach by the information on host. In the
approach of BotSwat [9], the user input component and
tainting component always run in the background to con-
tinuously monitor the user input events and the tainting
from network. When special system calls and parameters are
monitored, the behavior-check procedure will be triggered.
Martignoni’s [11] approach intercepts the sysenter and sysexit
and generates an event flow when the monitored process
terminated.The monitor will pass this event flow to behavior
matcher to trigger other modules. When BotTee [4] finds
a certain process calling the system calls within the range
of interception, it will generate a system call sequence and
trigger the other detectionmodules. Kolbitsch’s [13] approach
uses scanner to monitor the system calls and parameters
to generate the analyzed behavior graphs and trigger the
correlation engine for match. In BotTracer [10], after starting
the virtual machine, the processes automatically started on
host will be found. After filtering out the processes on
the white list, BotTracer [10] will continue to monitor the
remaining processes. When finding outgoing traffic from any
remaining process, this process will be flaged as suspicious.
Then a traffic model will be established to trigger the match
of C&C model. When the approach of Al-Hammadi [14]
is detecting IRC bots and if there is one process on host
trying to connect to the IRC server via IRC standard port,
the process will be intercepted and the relevant information
of this process will be recorded into SigLog orAntiLog, which
are the signal log and the antigens log. Then the two log
files will be passed to other modules to trigger detection
approaches.ThroughmonitoringWinsockAPI, the approach

International Journal of Distributed Sensor Networks 5

of JACKSTRAWS [17] will generate the monitored behavior
graphs and then match them with the templates in template
database to trigger other modules. In EFFORT [18], through
the analysis of human operations, network connections, and
the processes by human-process-network correlation analysis
module, they can find out network connection processes
driven by bots.Then the other threemodules will be triggered
to detect.

The approach of Zeng [5] triggers the detection approach
by the network information. In this approach, the host
monitor runs in the background to monitor host behaviors
at registry, file system, and network stack. The host suspicion
level generator calculates the overall suspicion level based on
the behaviors in a certain period of time. At the same time,
the network analyzer analyzes the Netflow in a certain period
of time and extracts network features for cluster analysis.
When a cluster is found, the information will be sent to
the correlation engine to trigger it. According to the cluster
information provided by network analyzer, the correlation
engine sends request for the suspicion level and features of
each host in this cluster and then generates a detection result.

2.5. Classification Metric 5: Correlation Engine. After obtain-
ing the host and network information, we need to process
the information comprehensively and generate the final
detection results.This comprehensive processing mechanism
is called correlation engine. There are three ways to process
information in correlation engine: matching the collected
information with the database, using the approaches of
statistics and using self-defined correlation rules.

Through obtaining information and triggering detection
approaches, the correlation enginewill deal with the collected
data and then match them with the previous database to
determine whether the host is infected. There are many
approaches using thisway to correlate, such as JACKSTRAWS
[17], the approaches of Martignoni [11], and Kolbitsch [13].
The approach of Martignoni [11] uses behavior matcher as
the correlation engine to match incoming event streams
with behavior graphs from the bottom. According to the
match rules, if successful, behavior matcher will generate an
event, which can be used in higher level of behavior graphs.
And when the incoming event stream matches with a high-
level behavior graph successfully, it means a bot process
is detected. For Kolbitsch [13], the approach uses scanner
to analyze the system calls of suspicious processes and
then generates system call sequences of this progress. Then
the scanner will match the system call sequences with the
behavior graphs in malicious behavior graph sets. Based on
theirmatch rules, if amatch is found, this process ismalicious
and it will be terminated. JACKSTRAWS [17] makes the
programs run in a sandbox and extracts the behavior graph to
match with all C&C templates. If the matching value reaches
a certain threshold, it means that there is a match and the
relevant connections will be detected as C&C connections.
They usemaximum common subgraph (mcs) to calculate the
distance between two graphs.

Some approaches process the collected information
through the statistical approach, and the result is used
to judge the suspicious hosts [4, 5, 14]. For example, the

approach of Al-Hammadi [14], in the final analysis stage, will
calculate the MCAV value of each antigen type according to
the formula. Based on the MCAV, they design an enhanced
coefficient, called MAC, on which they judge whether an
antigen is malicious or not. In the approach of Zeng [5], the
host analyzer will pass the degree of suspicious and the statis-
tic data of network characteristics to the correlation engine
when a cluster of suspicious hosts have been recognized by
network analyzers. Then the correlation engine will generate
a detection score and a detection result for each host by using
the correlation methods. According to this result, whether
the host has been infected could be determined. BotTee [4]
uses the method of match and statistics. At first BotTee [4]
passes system calls to the correlation engine. The correlation
enginewill calculate the results and pass them to the semantic
behavior matcher according to LCS and statistical methods.
Then the semantic behavior matcher will match the results
with the templates in database. When the optimal match
reaches a certain threshold, it will be considered as bot
behavior, otherwise benign behavior.

Some approaches use user-defined correlation rules,
which deal with the collected data and then generate a detec-
tion result to determinewhether the host has been infected [9,
10, 18].The correlation engine of BotSwat [9] is an approach of
behavior detection. When it is triggered, tainting component
and user input component will be queried. Tainting compo-
nent can provide the information about whether a particular
memory region is considered tainted. User input component
can provide the information about whether the data value
or memory region is considered clean or whether a syscall
invocation is likely the result of user input.Then according to
this information and predefined correlation rules, they can
determine whether the process is malicious. There are three
steps in BotTracer [10]. Every step is trying to remove benign
process from the suspicious process. The third step monitors
the processes selected from the first two steps and traces the
relevant system calls and parameters. Then based on the flow
mode they can determine whether the suspicious process
performs information harvesting or dispersion. And thus
they can determinewhether the suspicious process is bot.The
correlation engine of EFFORT [18] will collect the results of
the three previous modules, weighting these three results by
a weighted voting system to generate a final result. Therefore,
they can determine whether the process is malicious or not.

3. Overhead Analysis

In order to identify the factors affecting approaches’ over-
head, we select three typical detection approaches to deeply
analyze their flow and time complexity. They are Stinson’s
BotSwat [9], Younghee Park’s BotTee [4], and the approach
of Zeng [5].

3.1. Flow Analysis. There are many factors, such as the
steps, the operations, and the calculation of detection
approaches, affecting the delay of the detection of suspi-
cious behaviors. And these factors determine whether the
detection approaches can quickly and accurately detect sus-
picious behaviors. Thus analyzing the flow path of detection

6 International Journal of Distributed Sensor Networks

Detection
resultEnd

Start

M1: hooking

Tainting
behavior

M2: tainting
component

User input
behavior

M3: user
input

component

User input
behavior

M4: behavior-
check

procedure

No

No

No

Yes

Yes

Yes

(a)

M1: hooking

M2: bot
command
identifier

M3: correla-
tion engine

M4: semantic
behavior
matcher

Detection
result

End

Start

(b)

result

End

M1: in-host
monitor M3: router

M2: suspicion-
level

generator

M4: flow
analyzer

M5: cluste-
ring

M6: correlati-
on engine

Detection

Start

(c)

Figure 2: Flow charts of the three approaches.

approaches are significant for the decrease of overheads.
We select three from the above approaches to compare and
analyze: Stinson’s BotSwat [9], Younghee Park’s BotTee [4],
and the approach of Zeng [5].

Figure 2 is the flow charts of the three detection
approaches: (a) represents BotSwat, (b) represents BotTee,
and (c) represents the approach of Yuanyuan Zeng.

BotSwat [9] intercepts up to 2,200 API, according to
the class the API belongs to; they can separately trigger
the Tainting Component M2, User Input Component M3,
and Behavior-Check Procedure M4. When the information
from network, which are system calls related to the behavior
of network receiving, are intercepted, M2 will be triggered
and will trace the behaviors of the network, and then the
memory to which network behaviors has written will be
marked taint. M2 exports an interface that enables querying
whether a particular memory region is considered tainted.
When the intercepted system calls belong to user behaviors
or application behaviors controlled by users, M3 will mark
the related data and memory as clean, and it will export an
interface to query whether a data value or memory region is
considered clean or whether a system call is likely the result
of user input. When intercepted system calls belong to the
selected system calls, it will trigger M4, and then M4 will
determine whether to mark them as external control through
querying M2 and M3.

BotTee [4] uses Deviare API [21] to intercept Common
API. When intercepting recv and send, Deviare API will
trigger Bot Command Identifier M2, which will analyze the
system call sequences between recv and send to generate a
set of execution traces and each execution trace is called a

semantic unit. Then these execution traces will be passed
to the correlation engine M3, which will analyze these
sematic units to generate the command templates. Finally,
the generated command templates will be passed to semantic
behavior matcher M4, and M4 will match the command
templates with the templates in the database to determine
whether it is bot command.

Zeng et al. [5] combine host information and network
information to detect bot. They use Process Monitor to
monitor the information on host and process the information
of each time window. Registry Monitor, File SystemMonitor,
andNetwork StackMonitor compose the host-basedmonitor
M1, which passes the extracted feature vector to suspicion
level generatorM2. RouterM3 will pass the collected Netflow
of each time window to Flow Analyzer M4. Then M4 will
analyze the Netflow, extract the feature vector, and pass it to
the Cluster Analyzer M5. M5 will cluster the hosts in LAN
based on the network feature vector of each time window
and the preprocessed information of host distance and then
pass the results to correlation engine M6. Through sending
requests to all hosts in each cluster, M6 will combine host
information with network information to calculate the final
detection result to determine whether the host has been
infected.

3.2. Time Complexity Analysis. Table 2 shows the time com-
plexity analysis of the three approaches. BotSwat calls only
two query interfaces from Behavior-Check Procedure M4 to
get the detection result.The time complexity of query and cal-
culation is𝑂(1); therefore the overall time complexity is𝑂(1).
The triggermechanism of BotTee has threemodules:M2,M3,

International Journal of Distributed Sensor Networks 7

Table 2: Time complexity of each module (X denotes no computing, — denotes no such module).

M1 M2 M3 M4 M5 M6 Total
BotSwat X 𝑂(1) 𝑂(1) 𝑂(1) — — 𝑂(1)
BotTee X X 𝐶(𝑚, 2)𝑛 log(𝑛) 𝑡𝑚𝑛 log(𝑛) — — 𝑂(𝑡𝑚𝑛 log(𝑛))
Zeng X 𝑂(1) X 𝑂(1) 𝑂(𝑛

2
) 17𝑀𝑁 𝑂(𝑛

2
)

and M4. M2 is to obtain system call sequences without any
calculation. For the correlation engineM3, it needs to analyze
all the semantic units to generate sematic templates through
themethod of Longest Common Subsequence [25, 26] (LCS).
Suppose there are 𝑚 semantic units and the length of each
semantic unit is 𝑛. Because every two semantic units need
to calculate their LCS once, the total number of calculations
is 𝐶(𝑚, 2). The time complexity of LCS’s common algorithm
is 𝑂(𝑛2) [25], and it can reach 𝑂(𝑛 log(𝑛)) after optimizing.
Thus, the time complexity of M3 is 𝐶(𝑚, 2)𝑛 log(𝑛). Semantic
behavior matcher matches the suspicious semantic unit with
every template in the database by the match algorithm of
LCS. Suppose there are 𝑚 semantic units and 𝑡 templates
in database; the time complexity of M4 is 𝑡𝑚𝑛 log(𝑛); thus
the overall time complexity is (𝐶(𝑚, 2) + 𝑡𝑚)𝑛 log(𝑛). Due to
the fact that 𝑚 is much smaller than 𝑡 and 𝐶(𝑚, 2) is much
smaller than 𝑡𝑚, the overall time complexity is𝑂(𝑡𝑚𝑛 log(𝑛)).
The trigger mechanism of the approach of Zeng [5] has four
modules: M2, M4, M5, and M6. For the obtained feature
vectors of host, the host-based suspicion level generator M2
only needs to predict once by using trained LIBSVM [27]
and then needs one calculation. So the time complexity is
𝑂(1). When it comes to the process of network information,
the time complexity of the flow analyzer M4 is 𝑂(1). The
algorithm of cluster analysis M5 is Hierarchical Clustering
Algorithms [28], and the time complexity of this algorithm
is at least𝑂(𝑛2), in which 𝑛 is the number of involved objects,
and in this experiment it refers to the number of hosts in
LAN. After clustering, information will be passed to the
correlation engine M6. Suppose the correlation engine only
calculates the results of 𝑀 hosts and there are 𝑁 hosts in
each cluster, the complexity is 17𝑀𝑁 and the overall time
complexity is 𝑛2+17𝑀𝑁. Because𝑀 is smaller than 𝑛 and𝑁
is also smaller than 𝑛, the overall time complexity is 𝑂(𝑛2).

The time complexity of BotSwat [9] is 𝑂(1), BotTee [4]
is 𝑂(𝑡𝑚𝑛 log(𝑛)), and Zeng et al.’s [5] is 𝑂(𝑛2). It can be
seen that the approach of BotSwat [9] can detect suspicious
processes more quickly. The time complexity of BotTee [4] is
so high that the delay is very serious, while the approach of
Zeng [5] has a certain degree of delay. Due to the fact that
high time complexity can affect the overhead of hosts and
detection accuracy, we should reduce the time complexity of
the detection approach as far as possible under the condition
of not decreasing the accuracy.

We conclude Table 2 based on the analysis. As shown
in Table 2, the module with high time complexity is mainly
the correlation engine and the module providing data for
correlation engine. In addition, due to the interception of
system calls and processing, interception mechanisms and
intercepted system calls (M1 in Figure 2) will have major
impact on approaches’ overhead. Thus, the three major

Operating system

Hook API/library

Interception program

Bots and benign
programs

Correlation engine and
overhead monitor program

Level 1

Level 2

Level 3

Level 4

Figure 3: Implementation architecture.

factors affecting approaches’ overhead are the interception
mechanisms, intercepted systemcalls, and correlation engine.
Also there are some more factors which generate high
detection overhead. For example, in BotSwat, the overhead
of tracking tainted data in tainted engine and the overhead
of tracking clean data in user-input component are also
very time and resource consuming. For BotTee, the behavior
graph construction has high overhead. For Zeng’s work, the
information synchronization between hosts and centralized
server is also important for overhead.The capture of network
information in the router will consume the resources of the
router. These factors are important for the specific approach;
however they are not that common for host-based bot
detection approaches and a little difficult to analyze. Thus
we only compare and analyze the three factors and we may
analyze other factors in our future works. We implement
three experiments to evaluate our analyses.

4. Experimental Evaluation

4.1. Implementation. In our experiments, we make the fol-
lowing assumptions: (1) suppose the detection accuracy or
the effectiveness is uninfluenced by these factors.That means
these factors only influence the overheads. (2) Suppose CPU
usage andmemory usage reflect the overhead.We know these
two values may not expose the slight overhead difference;
however they can reflect the real impact on normal use. (3)
Suppose we can get the information provided for correlation
engine.

Those detection approaches are evaluated in different
implementation architectures. In order to compare and ana-
lyze their overhead, we need to evaluate them in the same
implementation architecture. As shown in Figure 3, this is
the implementation architecture of our experiments. There
are four levels. Level 1 is operating system, like Windows
XP. Level 2 is hook API or library, like Windows Hook
API, Detours, and Deviare API. Level 3 is our interception

8 International Journal of Distributed Sensor Networks

program based on hook API or library in level 2. Level 4 has
two different parts. One is bots and benign software; these are
the information sources to our interception programs in level
3. The other one is correlation engine and overhead monitor
program; correlation engine deals with the data captured by
interception program in level 3; overhead monitor program
monitors the usage of CPU and memory.

In our experiments, we make three different experiments
and each of them focuses on one factor. In the first two
experiments we use Windows Hook, Detours, and Process
Monitor to intercept system calls. The detection approaches
we simulate are BotSwat [9], BotTee [4], and Zeng’s [5]
approach. BotSwat uses Detours, BotTee uses Deviare API,
and Zeng’s approach uses Process Monitor.

Experiment 1 is about interception mechanisms. There
are three types of interception mechanisms: using Windows
Hook, using third-party libraries, such as Detours and
Deviare API [21], and using packaged tools, such as Process
Monitor [22]. We choose one approach from each class to
compare and analyze their differences. The program using
Windows Hook uses the same technique as [29] and uses
system-wide Windows Hook. The system calls are rewritten
in aDLLfile and theDLLfilewill be loadedwhenhook engine
starts. The program using Detours injects DLLs by remote
threads (function Create Remote Thread). It also loads a
DLL file including the system calls needed to be hooked.
The program using Process Monitor uses its commands to
program. Process Monitor intercepts all system calls and
stores the information in log files, we export the log files to csv
format for later analysis. The main program has two threads:
one controls Process Monitor and the other one analyzes the
log file. The first two programs intercept the same number of
system calls, and the last program intercepts all system calls.

Experiment 2 evaluates the type and number of system
calls intercepted. Park proposes the concept of Common
API in BotTee [4]. Common API refers to a set of APIs
extracted through the analysis of a large number of existing
bot commands’ execution. Every API in this set is called by
at least one bot command. They believe it is not necessary
to intercept system calls out of this set, and in this way they
can improve the efficiency and accuracy of the detection
approach. BotSwat intercepts almost all system calls. Several
other approaches intercept a small number of key APIs. We
select three different numbers of system call sets. One is the
Common API; we get the Common API using the method
in [4]. One is a small number of key system calls; it only
has several important system calls. The last one is all system
calls. In order to reduce the impact of different interception
mechanisms, we use Detours to intercept a small number
of key system calls and Common API, and we use Process
Monitor to intercept all system calls.

Experiment 3 evaluates correlation engine. We compare
and analyze Zeng’s approach [5] and EFFORT [18]. The
reason we choose these two approaches is that they represent
two typical approaches. Zeng’s approach [5] correlates infor-
mation obtained from hosts and that from network, which
is an approach combining host and network. EFFORT [18]
obtains multiple detection results about suspicious processes
on host and correlates multiple detection results to get

the final detection result, which is a host-based correlation
method.The correlationmethod in EFFORT [18]mainly uses
support vector machine (SVM). As the third assumption,
in the experiment we assume that we can get the detection
results of all parts from the host. Assuming there are some
rules of judgment, according to these rules different numbers
of detection results of the host can be produced randomly
as the positive samples (judged as bots in detection results)
and negative samples (judged as benign hosts in detection
results) of training data. In Zeng’s approach, we assume
that the detection has been completed on the host, and the
detection results can be obtained from the host. We capture
the network flow at the CERNET network during a day as
the background data. After the data has been filtered, we use
pvclust [30] to process the data with hierarchical clustering
and then combine the detection results provided by host with
the network-related information to get the final detection
result through correlation algorithm.

4.2. Evaluation Methodology and Experiment Setup. Exper-
imental environment has a small impact on the overhead,
accuracy, and other features of the detection approach. So
the closer to real environment is, the more convincing the
results will be. The experimental environments are mainly
divided into two classes: the normal operating system and the
environment using virtual machines or emulators.

Some approaches use normal operating systems, such
as BotSwat [9], the approach of Al-Hammadi [14], BotTee
[4], and Kolbitsch’s [13] approach. BotTee [4] establishes an
independent network, in which all hosts run the Windows
operating system, and the first host works as the C&C server
while the second host as an infected host and the third as
an attack target. Meanwhile, they all use Deviare API [21]
to intercept the system calls of Windows API. The approach
of Kolbitsch uses a single-core, 1.8 GHz Pentium 4 running
Windows XP with 1 GB of RAM.

Some approaches use virtual machines or emulators [5,
10, 11, 18]. BotTracer [10] uses Windows XP Professional,
version 5.5.3 of VMware workstation as a virtual machine,
VMware Converter [31] to clone hosts. In the experiment,
they establish a controlled network. BotTracer [10] runs on
a host with 2.79GHz CPU and 2GB RAM, and it intercepts
Win32 function calls by using Microsoft Detours 2.1 Express
[32] at the same time. The approach of Martignoni [11]
connects one target Qemu virtual host to another virtual host
VMgway. In VMvict, the system-level emulators monitor
benign or malicious processes. The VMgway serving as
gateway has three functions: to isolate emulators from the
external network to prevent further infection; to provide a
real network environment for malwares that can identify
networks; and to control the behaviors of bots as C&C server.
Zeng’s [5] botnet runs in a controlled environment where
VMware virtual machines are used to run Windows XP
operating systems, to collect the execution traces through
monitoring a virtual network. EFFORT [18] installs their
systems on 11 different hosts in real life and collects a few days’
data. When detecting, a virtual environment is established
and runs three virtual machines, which are infected host,

International Journal of Distributed Sensor Networks 9

10 20 30 40 50 60
0

5

10

15

20

25

30

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

L-system
L-detours

L-hook
L-promon

(a)

10 20 30 40 50 60
300

310

320

330

340

350

360

370

380

390

400

Time (min)

M
em

or
y

us
ag

e (
M

B)

L-system
L-detours

L-hook
L-promon

(b)

Figure 4: Overhead of running operating system in testing the type of interception mechanisms.

controller, and monitor. Windows XP SP3 operating system
and basic software are installed.

We select the normal operating system and establish a
controlled LAN. There are four independent hosts; one acts
as the botmaster, while the other three act as infected hosts,
Host1, Host2, and Host3.They all connect to the same router.
The four hosts have the same configurations: the Intel Q6600
quad-core processor, 2.40GHz, 2G RAM, and Windows XP
SP3 operating system. For the choice of bots, due to the
uncontrollable of P2P bots, we only use HTTP bots and
IRC bots, and they are HTTP-based bot Zeus [33], IRC-
based bot SdBot [34], and Agobot [35]. For the choice of
benign programs, considering the benign programs used in
the above detection approaches, we choose uTorrent, IE,
Firefox, Eudora, eMule, mIRC, and so forth.

We perform three experiments with each one focusing on
one affecting factor. In each experiment, we test the overhead
of the operating system, one typical benign program running,
all the benign programs running, and all the benign and
bot programs running. When testing the overhead of benign
programs, we start them all at the beginning of the test
time window. During the time window, we normally use the
benign programs, such as surfing on the Internet using IE and
chatting with friends using mIRC. For the bots, we also start
them all at the beginning. During their running, we control
the botmaster to send some commands to them. For each
case, we test them for one hour for several times and finally
take the average result of all these times as the final result.

4.3. Experiment Results

4.3.1. Experiment 1: The Type of Interception Mechanisms.
There are four sets of experimental result figures. In each
set, (a) shows the change of CPU usage rate and (b) shows
the change of memory usage. L-system represents running

only operating system, L-detours represents using Detours
to intercept, L-hook represents using Windows Hook to
intercept, L-promon represents using Process Monitor to
intercept, L-one represents running one typical benign pro-
gram, L-benign represents running all benign programs, and
L-benign-mal represents running all benign and malicious
programs. Figure 4 shows the change only with operating
system running. Figure 5 shows the overhead of running a
typical benign program, mIRC. Figure 6 shows the above-
mentioned benign programs are added to the host and the
host can have access to the Internet. Figure 7 shows that two
classes of bots are added to the host. In order to avoid bots’
propagation out of our control, we cut the link to the Internet.

In Figure 4(a), L-system and L-detours are almost always
at 0%. Besides a few fluctuations, L-hook remains at 0%.
The program using Process Monitor to intercept occupies at
least 5% CPU usage at run time. A fluctuation appears every
five minutes because the time window is set at 5mins. After
5mins Process Monitor will convert data format for later
analysis and the conversion process occupies a lot of CPU
portion. In Figure 4(b), the memory usage of pure operating
system remains at 312MB, and L-detours and L-hook remain
at 320MB.While due to every 5mins’ data format conversion,
that is, a fluctuation appearing per 5mins, L-promon remains
at 320MB in a normal state of monitoring.

Using Detours and Windows Hook to intercept system
calls has a small impact on CPU and memory usage. Using
Process Monitor has a greater impact on CPU and memory
usage, while not that great compared with the entire host.

To evaluate the difference when all or only one program
is running, we evaluate the overhead of a typical benign
program, m-IRC. Figure 5 presents the detailed overhead
of running m-IRC. In Figure 5(a), L-system, L-one, and L-
detours are almost always at 0%. L-hookhas a fewfluctuations
between 0% and 2%. L-promon costs at least 5% CPU usage

10 International Journal of Distributed Sensor Networks

10 20 30 40 50 60
0

5

10

15

20

25

30

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

L-system
L-one
L-detours

L-hook
L-promon

(a)

10 20 30 40 50 60
300

320

340

360

380

400

420

440

460

480

500

Time (min)

M
em

or
y

us
ag

e (
M

B)

L-system
L-one
L-detours

L-hook
L-promon

(b)

Figure 5: Overhead of running one benign program in testing the type of interception mechanisms.

10 20 30 40 50 60
0

5

10

15

20

25

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

L-system
L-benign
L-detours

L-hook
L-promon

(a)

10 20 30 40 50 60
300

400

500

600

700

800

900

Time (min)

M
em

or
y

us
ag

e (
M

B)

L-system
L-benign
L-detours

L-hook
L-promon

(b)

Figure 6: Overhead of running all the benign programs in testing the type of interception mechanisms.

and has a sudden rise during the format conversion about
every 5mins. In Figure 5(b), L-system remains at 320MB,
L-one almost remains at 340MB, L-detours remains almost
at 360MB, and L-hook rises and falls between 350MB and
360MB. L-promon fluctuates between 380MB and 400MB.
Compared with Figures 4 and 6, we can get two conclusions.
First, a benign program occupies a low CPU utilization in
the initial stage. However, it is much less than what all

benign programs occupy. Second, a benign program only
has a little impact on CPU utilization. However, for memory
usage, it has an obvious impact on all the three interception
mechanisms.

In Figure 6(a), L-system remains at 0%; L-benign and
L-detours almost stay at 0%–2%. L-hook is higher than L-
benign in the first 20mins; however they are almost the
same in the following 40 minutes. L-promon occupies at

International Journal of Distributed Sensor Networks 11

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

L-system
L-benign-mal
L-detours

L-hook
L-promon

(a)

10 20 30 40 50 60
300

350

400

450

500

550

600

Time (min)

M
em

or
y

us
ag

e (
M

B)

L-system
L-benign-mal
L-detours

L-hook
L-promon

(b)

Figure 7: Overhead of running both benign and malicious programs in testing the type of interception mechanisms.

least 5% CPU. In addition to the CPU time that format
conversion occupies, CPU usage experiences some fluctua-
tions in the first 10mins due to benign programs’ execution.
In Figure 6(b) L-system remains at 350MB, and L-benign
almost remains at 470MB; while L-detours remains almost at
520MB, L-hook rises and falls between 500MB and 550MB.
L-promon remains almost at 640MB. The result of Figure 6
is almost consistent with the results of Figure 4.

Figure 7 shows that both benign programs and two classes
of bots are running in the host. In order to avoid bots’
propagation out of our control, we cut the link to the Internet.
Therefore, in this experiment benign programs cannot run as
well as in Figure 6 and the usage rate of CPU and memory
will reduce. We install bot server in Bot Master to send bot
commands; Host1, Host2, and Host3 are infected by bots. In
experiments we send different commands to bot hosts at set
intervals.

In Figure 7(a), L-system remains at 0%, L-benign-mal, L-
detours, and L-hook remain almost at 0%with several fluctu-
ations.The reason is that the commandswe send launch some
sensitive operations and they are intercepted by interception
tools. During the conversion stage, the CPU usage rate of
L-promon is higher than that in Figure 6. This shows that
malicious programs create a lot of system calls, especially
the key system calls. In Figure 7(b), L-system remains at
almost 320MB, L-benign remains at about 450MB, and L-
detours and L-hook remain at almost 460MB. L-promon
remains almost at 460MB except for being in the data format
conversion stage.

Using Windows Hook and Detours has a small impact
on the overhead of detection approaches while having a high
efficiency. Process Monitor has a great impact on the over-
head of detection approaches, especially in the data format
conversion stage. The disadvantage of using Windows Hook

is that we need to add the APIs manually, and its overhead
highly depends on the choices of APIs.Therefore, it is easy to
get false negatives or false positives because of human factors.
We need to program every detail of Windows Hook, thus its
programming complexity is rather high. However, Detours is
a library which is already programmedwell and all we need to
do is add necessary codes according to the requirements. It is
easy to program and implement and not easy to make errors.

From this experiment, it ismore suitable to use third party
libraries (e.g., Detours) to intercept system calls.

4.3.2. Experiment 2: The Type and Number of System Calls
Intercepted. There are also four sets of experimental result
figures below. Figure 8 shows the result of running only
operating system, Figure 9 shows the overhead of running
a typical benign program, Figure 10 shows the result of
running all benign programs, and Figure 11 shows the result
of running both benign and malicious programs. In each
figure set, (a) shows the impact on CPU usage rate and (b)
shows the impact on memory usage. The benign programs
are those mentioned above and have access to the Internet.
The malicious programs are the three ones mentioned above
and have no access to the Internet.

In Figure 8(a), L-system, L-detours-less, and L-detours
remain almost at 0%. Programs’ running occupies 5% in L-
promon, so L-promon fluctuates in data format conversion.
In Figure 8(b), L-system occupies about 312MB. L-detours-
less and L-detours occupy about 323MB in a stable state. L-
promon occupies about 323MB during the monitoring stage
and fluctuates in data format conversion stage.

In Figure 8 using Detours to intercept a small number
of APIs has no obvious difference with using Common API.
There is only a little difference in memory usage in the first
30mins in Figure 8(b).

12 International Journal of Distributed Sensor Networks

10 20 30 40 50 60

5

10

15

20

25

30

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

0

L-system
L-detours-less

L-detours
L-promon

(a)

10 20 30 40 50 60

310

320

330

340

350

360

370

380

390

400

Time (min)

M
em

or
y

us
ag

e (
M

B)

300

L-system
L-detours-less

L-detours
L-promon

(b)

Figure 8: Overhead of running only operating system in testing the type and number of system calls intercepted.

10 20 30 40 50 60

5

10

15

20

25

30

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

0

L-system
L-one
L-detours-less

L-detours
L-promon

(a)

10 20 30 40 50 60

350

400

450

500

550

600

Time (min)

M
em

or
y

us
ag

e (
M

B)

300

L-system
L-one
L-detours-less

L-detours
L-promon

(b)

Figure 9: Overhead of running one benign program in testing the type and number of system calls intercepted.

We run m-IRC to test the impact of one program on the
type and number of system calls intercepted. In Figure 9(a),
L-system, L-one, and L-detours-less remain almost at 0%,
while L-one occupies a lessCPUusage during the initial stage.
L-detours has a little fluctuations between 0% and 2%, and L-
promon still has a sudden rise during data format conversion.
In Figure 9(b), L-system remains at about 320MB, L-one
almost remains at 360MB, L-detours-less remains almost at
380MB, and L-detours remains almost at 390MB, while L-
promon fluctuates between 310MB and 320MB. Compared

with Figures 8 and 10, we can see that (1) in the initial stage a
benign program occupies a little CPU usage, which is much
less than all benign programs. (2) For CPU usage, a benign
program has a little impact on Detours and Process Monitor.
However, for memory usage, it has an obvious impact on all.

In Figure 10(a), L-system, L-benign, and L-detours-less
remain almost at less than 1%, while L-detours rises and falls
in the first 20mins between 1% and 5%, and, the rest of the
time, it remains almost at 1%. In L-promon there are a few
fluctuations duringmonitoring stage, while it remains almost

International Journal of Distributed Sensor Networks 13

10 20 30 40 50 60

5

10

15

20

25

30

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

0

L-system
L-benign
L-detours-less

L-detours
L-promon

(a)

10 20 30 40 50 60

400

500

600

700

800

900

Time (min)

M
em

or
y

us
ag

e (
M

B)

300

L-system
L-benign
L-detours-less

L-detours
L-promon

(b)

Figure 10: Overhead of running all the benign programs in testing the type and number of system calls intercepted.

10 20 30 40 50 60

5

10

15

20

25

30

35

40

Time (min)

CP
U

 u
sa

ge
 ra

te
 (%

)

0

L-system
L-benign-mal
L-detours-less

L-detours
L-promon

(a)

10 20 30 40 50 60

350

400

450

500

550

600

Time (min)

M
em

or
y

us
ag

e (
M

B)

300

L-system
L-benign-mal
L-detours-less

L-detours
L-promon

(b)

Figure 11: Overhead of running both benign and malicious programs in testing the type and number of system calls intercepted.

at 5%. The data format conversion stage occupies a lot of
CPU. In Figure 10(b), L-system remains almost at 350MB,
L-benign remains almost at 470MB, L-detours-less remains
at about 525MB, L-detours remains at about 550MB, and L-
promon remains at about 640MB.

We can see that using Detours to intercept Common API
occupies more CPU and memory than to intercept a small
number of APIs, while the difference is very small.

In Figure 11, due to the disconnection with network,
benign programs’ running is restricted. Therefore, in
Figure 11(a), L-system, L-benign-mal, L-detours-less, and
L-detours remain at 0% to 1% with a few fluctuations. While
L-promon occupies more CPU in data format conversion
process than that in Figure 10(a). We believe this shows
that the execution of malicious programs brings a large
number of system calls. In Figure 11(b), L-system remains

14 International Journal of Distributed Sensor Networks

0 500 1000 1500 2000

16

18

20

22

24

26

Total host numbers

CP
U

 u
sa

ge
 ra

te
 (%

)

14

L4:4 hosts
L8:8 hosts

L16:16 hosts

(a)

L4:4 hosts
L8:8 hosts

L16:16 hosts

0 500 1000 1500 2000

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Total host numbers

M
em

or
y

us
ag

e (
M

B)

1.7

(b)

Figure 12: Overhead of Zeng’s correlation method under different parameters.

at about 320MB, L-benign-mal remains at about 450MB,
L-detours-less and L-detours remain at about 460MB, and
L-promon remains at about 460MB in monitoring stage
though there are fluctuations in data format conversion
stage.

Using Detours to intercept Common API occupies more
CPU and memory than to intercept a small number of APIs,
while the difference is very small. Therefore, the overhead of
interceptingCommonAPI is acceptable. Intercepting all APIs
needs to process a lot after interception, such as removing
unrelated APIs; thus the efficiency will fall and the overhead
will increase. Intercepting a small number of APIs has a
higher efficiency; however it will significantly increase false
negative rate.Therefore, intercepting CommonAPI increases
the efficiency of detection approach significantly without
reducing the detection accuracy. It is more reasonable to use
Common API to intercept system calls.

4.3.3. Experiment 3: Correlation Engine. In Zeng’s approach
[5], the input information of correlation engine has two
parts: the host information and the network information.The
complexity of the algorithm mainly lies in the calculation of
the average distance of a host in its cluster. In the experiment,
we control the number of hosts before clustering and the
number of hosts doing correlation calculation at the same
time. Then we test the overhead of correlation algorithm
under different circumstances. The number of hosts before
clustering is divided into 20 cases ranging from 100 to
2000 and the number of concurrent hosts doing correlation
computing is divided into three levels of 4, 8, and 16. We
conduct detecting experiments multiple times for each level
of each test case and record the CPU and memory usage.
Figure 12(a) is the change of CPU; as we can see from
the figure, when a small number of hosts do correlation
computing, the total number of hosts in their network has

a great impact on CPU usage, and when there are a large
number of concurrent hosts, the total number of hosts has
a small impact on CPU usage. Figure 12(b) is the change
of memory usage. During the calculation of the average
distance of a host in its cluster, the correlation engine needs
to load hosts’ information that have been clustered.When the
concurrent number increases to a certain extent, it almost
needs to load all hosts’ information, while memory usage
changes a little, so the major factors affecting memory usage
are still the number of hosts in the network.

The correlation engine of EFFORT [18] detects the sus-
picious process on the host through three modules which
are process reputation analysis, system resources analysis,
and network information analysis to finally generate the
detection report. SVM algorithm is used in calculating each
modules weight when correlating the results of each module.
The complexity of the correlation algorithm mainly lies in
the number of samples and the number of support vectors.
We use LIBSVM [27] to test the overhead of correlation
engine. In the experiment, sample data is divided into 51
test cases from 1000 to 6000, and each test case, respectively,
run for multiple times, recording the average usage of CPU
and memory when the correlation algorithm is running.
Figure 13(a) shows the CPU changes in the training stage of
the correlation algorithm; when the sample data increases,
the CPU usage increases obviously, while the growth rate
decreases when it reaches a certain extent. However, with
the decrease of growth rate, the training time significantly
increases. Figure 13(b) shows the result of the experiment
aboutmemory changes. Since, in the training process, sample
data needs to do matrix operation, which applies for a lot of
space, the memory change increases almost in a linear way.

Zeng’s correlation engine combines host detection results
and the related information of other hosts in the network,
while EFFORT’s correlation engine only uses the detection

International Journal of Distributed Sensor Networks 15

1000 2000 3000 4000 5000 6000

5

10

15

20

25

Number of samples

CP
U

 u
sa

ge
 ra

te
 (%

)

0

CPU (%)

(a)

1000 2000 3000 4000 5000 6000

20

40

60

80

100

120

140

Number of samples

M
em

or
y

us
ag

e (
M

B)

0

Memory (MB)

(b)

Figure 13: Overhead of EFFORT correlation method under different parameters.

Table 3: Overhead of the type of interception mechanisms.

Interception mechanism System Benign Malicious
CPU Memory CPU Memory CPU Memory

Windows Hook 0.0823% 322.1556 0.4596% 514.2444 0.0425% 463.8000
Detours 0.0071% 321.3278 0.1131% 526.4917 0.0444% 461.7306
Process Monitor 5.2647% 324.8750 5.5251% 638.3167 5.8490% 465.9056

results of multiple modules on hosts. Zeng’s correlation
engine is not deployed in bot host and has a small impact
on the overhead of hosts. The host deploying the correlation
engine handles all detection results and it has a great impact
on the host. The correlation method of EFFORT has a great
impact on host overhead at the training stage. And, with the
increment of sample data, thememory increases very quickly.
However, in the prediction stage it only needs to handle a
single host’s detection result and has a small impact on the
overhead of the detected host. Therefore, it can be seen that
the correlation engines of the two approaches both have small
impact on the overhead of the detected hosts. However, they
have a great impact on the host deployed as the correlation
engine.

4.4. Summary. According to the above analysis and experi-
ments, the major factors affecting host overheads are inter-
ception mechanisms on host, the type and number of system
calls intercepted, and correlation engine. We summarize the
detailed overhead values in Tables 3 and 4. We can draw the
following knowledge:

(1) There are three primary interception mechanisms:
using Windows Hook to intercept, using Detours,
Deviare API, and other third-party libraries to inter-
cept, and using packaged tools, such as Process
Monitor [22], to intercept. After the experiment in
Section 4.3.1, we calculate the average values of CPU

usage and memory usage in three different situations.
As shown in Table 3, using packaged tools, such as
ProcessMonitor, has a great impact on host overhead,
and using Windows Hook and Detours has a smaller
impact on host overhead.

(2) The type and number of intercepted system calls
can be divided into three classes: intercepting all
system calls, intercepting a specific subset of API
calls, such as Common API, and intercepting a small
number of key system calls. After the experiment in
Section 4.3.2, we calculate the average values of CPU
usage and memory usage in three different situations.
As shown in Table 4, intercepting all system calls has
a great impact on host overhead, and intercepting
Common API and a small number of key APIs has
a smaller impact on host overhead.

(3) Correlation engines can be divided into two classes
based on detection approaches: correlation of internal
information onhost, such as EFFORT, and correlation
of information on host and information on network,
such as the approach of Zeng. The experiment result
in Section 4.3.3 indicates that correlation of internal
information on host has a great impact on host
overhead because the operations of calculationmatch,
especially themore increased suspicious information,
the more overheads increase. Correlation engine
that uses both host and network information is not

16 International Journal of Distributed Sensor Networks

Table 4: Overhead of the type and number of system calls intercepted.

Intercepted system calls System Benign Malicious
CPU Memory CPU Memory CPU Memory

Few APIs 0.0071% 321.3278 0.1131% 526.4917 0.0444% 461.7306
Common API 0.0058% 323.8444 0.9025% 541.5444 0.0431% 462.6302
All system calls 5.2647% 324.8750 5.5251% 638.3167 5.8490% 465.9056

deployed in the suspicious host; thus this approach
has no impact on host. It has great impact on the
overhead of host which acts as correlation engine.
Due to the delay of information exchange, large-
scale computation, and other reasons, the real-time
detection is affected.

According to the experimental results and summary, we
propose the following optimizations:

(1) For experiment 1, the Process Monitor adopts sim-
ilar mechanisms as Windows Hook but with more
overhead of creating an independent GUI process to
achieve real-time monitoring. Detours and Windows
Hook use different hooking mechanisms; however
their difference on CPU and memory usage is lit-
tle. We may take a more fine-grained comparison
between Detours and Windows Hook in our future
works. In actual programming, programmers should
pay attention to every interception details ofWindows
Hook. The programming complexity is much higher
than Detours. Therefore, we believe using third-party
library, such as Detours, is more reasonable.

(2) In the aspect of the type and number of intercepted
system calls, intercepting all system calls has a great
impact on host overhead, especially when many
benign programs are running. Intercepting a small
number of key system calls has a very low overhead,
yet which system call we should select is difficult to
decide. If we select inappropriately, the false negative
rate will be significantly increased.When intercepting
a specific subset of system calls, such as Common
API, the subset is created through the analysis of
existing bots or other malicious codes. The coverage
thus is very wide, and it will not increase the false
negative rate. Therefore, intercepting a specific subset
of system calls, such as Common API, can signifi-
cantly reduce the impact on host overhead without
increasing the false negative. We believe that using a
specific subset of system calls, such as Common API,
is a more reasonable choice.

(3) Since the design of correlation engine is flexible and
there is no sole criterion, we propose the following
measures to improve the correlation engine: mini-
mize the time and space complexity of the correla-
tion methods and optimize the calculation modules;
enumeration approach should be abandoned when
using database to match; unrelated match should be
reduced by increasing the index, buffer pool, and so
forth. In calculating module, we should try to avoid

large-scale computing in real time and reduce online
detection overhead by increasing offline computing,
such as preprocessing.

5. Discussion

There are several limitations which are also our future works.
(1)We suppose the detection accuracy or the effectiveness are
uninfluenced by these factors. Only measuring the overheads
without considering detection accuracy is not completed.
One might be willing to pay more in overhead penalty with
high detection accuracy.Wewill take amore accurate analysis
with both overhead and detection accuracy in our future
works. (2)We suppose CPU usage andmemory usage reflects
the overhead. These two values may not expose the slight
overhead difference. Also we measure the CPU and memory
usage in a time interval of 10 seconds. We will take a more
fine-grained analysis withmore accurate criteria andmetrics.
(3) Beside these three factors, there are some more factors
which generate high detection overhead, such as, tainted data
tracking, clean data tracking, behavior graph construction,
and information synchronization between hosts and central-
ized server.Wemay analyze these factors in our future works.

6. Conclusions

Since traffic-based approaches cannot completely eliminate
the threats of botnet, detection approach based on a single
host is considered more effective. However, the overhead of
host-based bot detection approaches remains a bottleneck
blocking its wider deployment. This paper compares and
analyzes the features of host-based bot detection approaches
and the complexity of each module. We identify three major
factors affecting the performance of approaches, including
interception mechanisms on host, the type and number
of system calls intercepted, and correlation engine. Then
we evaluate these factors through experiments. Finally, we
summarize the experiment results and discuss some opti-
mizations which can significantly improve the performance
of host-based bot detection approaches.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their valuable feedback to this paper. This work was

International Journal of Distributed Sensor Networks 17

supported in part by theNationalNatural Science Foundation
of China under Grants nos. 61170265 and 61472162.

References

[1] Z. Bu, P. Bueno, R. Kashyap, and A. Wosotowsky, “The new era
of botnets,” White Paper fromMcAfee, 2010.

[2] G. Gu, Correlation-Based Botnet Detection in Enterprise Net-
works, ProQuest, Ann Arbor, Mich, USA, 2008.

[3] Y. Park, Q. Zhang, D. Reeves, and V. Mulukutla, “AntiBot:
clustering common semantic patterns for bot detection,” in
Proceedings of the 34th Annual IEEE International Computer
Software and Applications Conference (COMPSAC '10), pp. 262–
272, IEEE, Seoul, Republic of Korea, July 2020.

[4] Y. Park and D. S. Reeves, “Identification of bot commands
by run-time execution monitoring,” in Proceedings of the 25th
Annual Computer Security Applications Conference (ACSAC
’09), pp. 321–330, IEEE, December 2009.

[5] Y. Zeng, X.Hu, andK.G. Shin, “Detection of botnets using com-
bined host- and network-level information,” in Proceedings of
the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN ’10), pp. 291–300, IEEE, July 2010.

[6] T. Kwon and Z. Su, “Modeling high-level behavior patterns for
precise similarity analysis of software,” in Proceedings of the 11th
IEEE International Conference on Data Mining (ICDM ’11), pp.
1134–1139, IEEE, December 2011.

[7] X. Wang and X. Jiang, “Artificial malware immunization based
on dynamically assigned sense of self,” in Information Security,
vol. 6531 of Lecture Notes in Computer Science, pp. 166–180,
Springer, Berlin, Germany, 2011.

[8] F. Y. Law, K. Chow, P. K. Lai, and K. Hayson, “A host-
based approach to botnet investigation?” in Digital Forensics
and Cyber Crime, vol. 31 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 161–170, Springer, Berlin, Germany, 2010.

[9] E. Stinson and J. C. Mitchell, “Characterizing bots’ remote
control behavior,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, vol. 4579 of Lecture Notes in Computer
Science, pp. 89–108, Springer, Berlin, Germany, 2007.

[10] L. Liu, S. Chen, G. Yan, and Z. Zhang, “Bottracer: execution-
based bot-like malware detection,” in Information Security, pp.
97–113, Springer, 2008.

[11] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C.
Mitchell, “A layered architecture for detecting malicious behav-
iors,” inRecent Advances in IntrusionDetection, LectureNotes in
Computer Science, pp. 78–97, Springer, Berlin, Germany, 2008.

[12] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill, 1971.

[13] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou,
and X. Wang, “Effective and efficient malware detection at the
end host,” in Proceedings of the 18th Conference on USENIX
Security Symposium, pp. 351–366, USENIX Association, 2009.

[14] Y. A. A. Al-Hammadi, Behavioural correlation for malicious bot
detection [Ph.D. thesis], University of Nottingham, 2010.

[15] J. Greensmith, J. Feyereisl, and U. Aickelin, “The DCA: SOMe
comparison,” Evolutionary Intelligence, vol. 1, no. 2, pp. 85–112,
2008.

[16] L. N. De Castro and J. Timmis, Artificial Immune Systems: A
New Computational Intelligence Approach, Springer, 2002.

[17] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “Jackstraws:
picking command and control connections from bot traffic,” in
Proceedings of the USENIX Security Symposium, 2011.

[18] S. Shin, Z. Xu, and G. Gu, “EFFORT: efficient and effective
bot malware detection,” in Proceedings of the IEEE Conference
on Computer Communications (INFOCOM ’12), pp. 2846–2850,
Orlando, Fla, USA, March 2012.

[19] Z. Xu, L. Chen, G. Gu, and C. Kruegel, “PeerPress: utilizing
enemies’ P2P strength against them,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS
’12), pp. 581–592, October 2012.

[20] G. Hunt and D. Brubacher, “Detours: binary interception of
Win32 functions,” in Proceedings of the 3rd Conference on
USENIX Windows NT Symposium, 1999.

[21] Deviare API hook overview, Feburary 2014, http://www.nektra
.com/products/deviare-api-hook-windows/.

[22] Process monitor, http://technet.microsoft.com/en-us/sysinter-
nals/bb896645.aspx.

[23] Anubis: Analyzing unknown binaries, 2014, http://anubis
.iseclab.org/.

[24] Apitrace, 2014, http://apitrace.github.com/.
[25] Longest common subsequence problem—wikipedia, the free

encyclopedia, 2014, http://en.wikipedia.org/wiki/Longest com-
mon subsequence problem#cite note-BHR00-2.

[26] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Intro-
duction to Algorithms, MIT Press, Cambridge, Mass, USA, 2nd
edition, 2001.

[27] “Libsvm—a library for support vector machines,” 2014, http://
www.csie.ntu.edu.tw/∼cjlin/libsvm/.

[28] A tutorial on clustering algorithms, http://home.dei.polimi.it/
matteucc/Clustering/tutorial html/hierarchical.html.

[29] API hooking revealed—codeproject, Feburary 2014, http://
www.codeproject.com/Articles/2082/API-hooking-revealed.

[30] “Pvclust: an r package for hierarchical clustering with p-values,”
2014, http://www.is.titech.ac.jp/∼shimo/prog/pvclust/.

[31] Vmware vcenter converter, convert physical machines to virtual
machines, 2014, http://www.vmware.com/products/converter.

[32] Detours—microsoft research, 2014, http://research.microsoft
.com/en-us/projects/detours/.

[33] Zeus (trojan horse)—wikipedia, the free encyclopedia, http://en
.wikipedia.org/wiki/Zeus (Trojan horse).

[34] Thread description: Backdoor:w32/sdbot.mb, 2014, http://www
.f-secure.com/v-descs/sdbot mb.shtml.

[35] Agobot—wikipedia, the free encyclopedia, 2014, http://en
.wikipedia.org/wiki/Agobot.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

