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Abstract. Botnet has become one of the most serious threats to In-
ternet security. According to detection location, existing approaches can
be classified into two categories: host-based, and network-based. Among
host-based approaches, behavior-based are more practical and effective
because they can detect the specific malicious process. However, most of
these approaches target on conventional single process bot. If a bot is
separated into two or more processes, they will be less effective. In this
paper, we propose a new evasion mechanism of bot, multiprocess mecha-
nism. We first identify two specific features of multiprocess bot: separat-
ing C&C connection from malicious behaviors, and assigning malicious
behaviors to several processes. Then we further theoretically analyze why
behavior-based bot detection approaches are less effective with multipro-
cess bot. After that, we present two critical challenges of implementing
multiprocess bot. Then we implement a single process and multiprocess
bot, and use signature and behavior detection approaches to evaluate
them. The results indicate that multiprocess bot can effectively decrease
the detection probability compared with single process bot. Finally we
propose the possible multiprocess bot architectures and extension rules,
and expect they can cover most situations.

1 Introduction

Botnet has become one of the most serious threats to Internet security. A bot
is a host compromised by malwares under the control of the botmaster through
Command and Control (C&C) channel. A large scale of bots form a botnet. The
botmaster can utilize botnets to conduct various cyber crimes such as spread-
ing malwares, DDoS attacks, spamming, and phishing. Bots always try to hide
themselves from detection tools to accomplish malicious behaviors.

According to detection location, existing approaches can be divided into two
categories: host-based and network-based. (1) Host-based approaches mainly in-
clude signature- and behavior-based approaches [1]. Signature-based approaches
mainly extract the feature information of the suspicious program to match with
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a knowledge database [2]. Behavior-based detection approaches monitor the ab-
normal behaviors on hosts to detect bot [3-6]. (2) Network-based approaches
mainly analyze network traffic to filter out bot host [7-9].

Among host-based detection approaches, behavior-based approaches are more
practical and effective because they can detect the specific malicious process.
However, most behavior-based approaches are based on single process or related
family processes. If a bot is separated into two or more processes, these ap-
proaches will be less effective. Multiprocess bot has two specific features as we
proposed in this paper: (1) It can separate C&C connection from malicious
behaviors; (2) It can assign malicious behaviors to several processes. As we
know, the biggest difference between bot and other malwares is the C&C in-
frastructure. If the C&C connection is separated from malicious behaviors, the
detection approaches correlating network behaviors with malicious behaviors will
be less effective. Similarly, if malicious behaviors are assigned to several processes
and each process only performs a part of malicious behaviors, the suspicion
level may drop to the same with benign process. Thus, malicious behaviors
detection approaches will be less effective. If bot can successfully evade exist-
ing behavior-based detection approaches, it will cause more threats to Internet
security.

Multiprocess malware has been analyzed by some researchers. Ramilli M et
al. propose the idea of multiprocess malware and prove that the malware divided
into several processes will effectively evade the detection of most anti-virus en-
gines [10]. Lejun Fan et al. define three important architectures of multiprocess
malwares, relay trace, master slave, and dual active mode [11]. Weiqin Ma et al.
present a new attack, namely “shadow attacks”, which divides a malware into
multiple “shadow processes” [12]. Experiments indicate that multiprocess mal-
wares can effectively evade the detection of behavior-based detection approaches.
Multiprocess bots have been discovered [13], while they have not been studied in
detail. If multiprocess bots really explodes, we know nothing about their archi-
tectures, communication mechanisms, and other critical knowledge, then they
will cause great threats. Thus analyzing them will be very significant.

Our work makes the following contributions:

(1) We identify two specific features of multiprocess bot: separating C&C
connection from malicious behaviors, and assigning malicious behaviors to sev-
eral processes. Then we theoretically analyze why existing behavior-based bot
detection approaches are less effective with multiprocess bot according to four
categories of behavior-based approaches.

(2) We present two critical challenges of implementing multiprocess bot, and
implement a single process and multiprocess bot from a simplified version of
Zeus. We use signature and behavior based detection approaches to evaluate
them. The results indicate that multiprocess bot can effectively decrease the
detection probability. Then we propose other multiprocess bot architectures and
extension rules, and expect they can cover most situations.
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2 Evasion Mechanism of Multiprocess Bot

We first present the two specific features of multiprocess bots, then analyze why
they are able to evade behavior bot detection approaches.

2.1 Specific Features of Multiprocess Bot

There are two specific differences between multiprocess and conventional bot:
separating C&C connection from malicious behaviors, and assigning malicious
behaviors to several processes. Lejun Fan et al. propose a typical multiprocess
architecture master slave mode [11]. We rename it as star architecture using the
terminology of network topology. In star network topology, each host is connected
to a central hub with a point-to-point connection. Similarly, as shown in Figure
1, process P; acts as the central hub, connects with C&C server S and other
malicious processes P», P53, and P,. In Figure 1, the circle denotes benign process,
the hexagon denotes malicious process, S denotes C&C server, and P; denotes
different processes. We will analyze the two features using star architecture.

Fig. 1. Star Architecture of Multiprocess Bot

Feature 1: Separating C&C Connection from Malicious Behaviors. The
first feature of multiprocess bot is separating C&C connection from malicious
behaviors. It means that the process communicating with C&C server has no
other malicious behaviors, and the malicious processes do not communicate with
C&C server directly. We regard this specific process as server process. We will
analyze this feature using the star architecture as shown in Figure 1.

In star architecture, P; is the server process that establishes C&C channel
with server S. P», P35, and P4 are the malicious processes. Suppose the botmas-
ter sends a command to the multiprocess bot and we will explore the whole
execution procedure. C&C server S sends a command to P;. In order to evade
track techniques like taint analysis [14], the server process can transform data
flow dependence into control flow dependence or other obfuscation techniques.
After the transformation, the server process sends the command to a certain
process using process communication mechanisms. This process performs mali-
cious behaviors in accordance with the command. After execution, the malicious
process sends the result data to the server process. The malicious process can
also use obfuscation techniques to better evade track techniques. After receiving
the result data, the server process sends them to the C&C server.
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In this feature, the server process P; only has network behaviors, and the
malicious processes P;, P>, and P5 only perform a part of all malicious behaviors.
Some behavior-based bot detection approaches detect the process which only
has network behaviors as benign, and the process without network behaviors
will be neglected. Through transforming data flow dependence into control flow
dependence or other obfuscation mechanisms, the server process is separated
from other malicious processes. Thus this feature is able to evade the detection
approaches correlating network behaviors with malicious behaviors. However it
may not be able to evade approaches which only detect host malicious behaviors.

Feature 2: Assigning Malicious Behaviors to Several Processes. The
second feature is that malicious behaviors are assigned to several processes.
Thus, each process only performs a small part of whole malicious behaviors.
This feature can effectively evade malicious behavior detection approaches with
well designed number of malicious behaviors each process has. Thus, the number
becomes a critical challenge. We will use three phases to explain how to define
the number and prove that multiprocess bot is able to evade behavior detection.

We utilize the notations in Table 1 to explain this feature. In Table 1, C'
denotes the critical system call set, a; denotes the ith system call, and there are
k system calls in total. f; denotes the ith behavior which has num(f;) system
calls, and each one of them is denoted as aé.. numl; denotes the number of critical
system calls of each behavior f;, and num2; denotes the number of behaviors
that critical system call a; is in.

Table 1. Notations of system calls and behaviors

Description Set
critical system call set C={ai,...,a;,...,a}
system call set of each behavior fi=AHal,... ,a;i, RN azmm(fv)}
i

number of critical system calls
of each behavior f;
number of behaviors that
critical system call a; is in

Numl = {numli,...,numl;,...,numl,}

Num?2 = {num?21,...,num2;,...,num2y}

Phase 1: Suppose we extract the system calls of known malicious behaviors
to build the system call set f; of each behavior. We build the critical system call
set C' using the similar methods of building Common APT in [15]. The system
calls in the critical set are frequently called by these malicious behaviors.

Phase 2: We match every system call a;. of each set f; with critical set C to
generate numl;, and after matching all we can get set Numl. It denotes the
number of critical system calls of each behavior. We match every system call a;
of critical set C' with each set f; to generate num?2;, and then Num?2. It denotes
the number of behaviors that call a specific critical system call.

Phase 3: Based on set Numl and Num2 we can get two assignment mecha-
nisms: behavior level and system call level assignment mechanism. In behavior
level assignment, we sort the behaviors in descending order in set Num1. The top
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behaviors represent the most frequent behaviors. We can separate the top behav-
iors with each other to average the critical behavior numbers of each process. In
this way, we can decrease the malicious grain size of each process. We can assign
the sorted set to the processes in S shape, and other assignment mechanisms like
arithmetic, random walk, etc. can also be used. Set Num2 is about system call
level assignment mechanism. We also sort the system calls in descending order.
We assign top system calls to different processes or even a process only perform-
ing one critical system call. This assignment mechanism is more complicated than
behavior level.

We summarized the whole procedure in Algorithm 1. A multiprocess bot using
either of them will significantly improve the evasion probability. If a multiprocess
bot uses both of them, it will be very difficult to detect. Thus this feature can
effectively evade behaviors detection approaches.

Algorithm 1. Process Assignment Algorithm

build the system call set f; for each malicious behavior
build the critical system call set C
match each system call set f; with C' to generate Num1l
match critical set C with each system call set f; to generate Num?2
t = number of processes
sort Numl in descending order
for i from 1 to t do

assign behavior 4,2+t +1—14,2xt+41,... to process ¢
end for
. sort Num?2 in descending order
. for i from 1 to t do
assign system call 4,2t 4+ 1 —14,2*%t+1,... to process @
. end for

® N O W

=
WO

2.2 Evading Behavior-Based Bot Detection Approaches

According to detection targets, we classify existing behavior-based bot detec-
tion approaches into 4 categories: detecting C&C connections, detecting mali-
cious behaviors, detecting bot commands, and detecting bots (correlating C&C
connection with malicious behaviors). Based on the two specific features, we uti-
lize an example approach of each category to analyse why behavior-based bot
detection approaches are less effective with multiprocess bot.

Detecting C&C Connections. In this category, detection approaches detect
bots based on C&C connections on host and JACKSTRAWS [16] is a typical
one. It associates with each network connection a behavior graph that captures
the system calls that lead to the connection and operate on returned data.
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We use star architecture in Figure 1 to present the evasion procedure. The
server process P; establishes connection with C&C server S and it will be cap-
tured by JACKSTRAWS. P; can transform data flow dependence into control
flow and distributes the corresponding data to appropriate processes using pro-
cess communication mechanisms. The malicious processes P», P3, and P, perform
fine-grained malicious behaviors which have nothing to do with network connec-
tions. After finishing the malicious behaviors, they will send the result data to
P;. Then P; will upload them to C&C server. In this way, multiprocess bot can
separate network connection from malicious behaviors.

According to JACKSTRAWS, the captured network connection alone is not
enough for being detected as malicious C&C. What’s more, if the connection
is encrypted, the detection will be more difficult. They mention three failed
detection cases and the first is that the bot process did not finish its malicious
behaviors after receiving commands. In this way, multiprocess bot can evade this
detection approach.

Detecting Malicious Behaviors. Approaches in this category detect bots
based on host malicious behaviors. Martignoni et al. propose an typical approach
using hierarchical behavior graphs to detect malicious behaviors.

This approach is less effective with multiprocess bot. First, it monitors the
execution of one single process, while in multiprocess bot, there are several pro-
cesses performing malicious behaviors. Specifically, multiprocess bot can evade
taint analysis from transforming data flow dependence into control flow, thus
this approach is not able to detect any relationship between processes.

Second, the first feature of multiprocess bot is separating C&C connection
from malicious processes. As shown in star architecture, S only communicates
with the server process P;. Based on this feature, P; only has network behaviors,
thus in behavior graphs it is similar with benign network processes. The other
malicious processes perform a part of malicious behaviors without C&C connec-
tion, thus in behavior graphs they may not be the same with malicious behavior
graphs. However, if a process still performs critical malicious behaviors, it can
also be detected.

Third, the second feature is assigning malicious behaviors to several processes.
As we discussed before, there are two separation mechanisms: behavior and
system call level. A multiprocess bot using these two mechanisms can make the
event sequence of each process different from any malicious behavior graph. Thus
this approach is less effective with multiprocess bot.

Detecting Bot Commands. In this category, detection approaches detect
bots based on bot commands. BotTee [15] is a typical approach of identifying
bot commands by run time execution monitoring.

BotTee can effectively detect conventional bot commands. However, it has
two obvious drawbacks: it monitors the execution of single process; it highly
relies on network related system calls. The first drawback is opposite with the
second feature of multiprocess bot which assigns malicious behaviors to several
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processes. BotTee detects bot commands in system call level thus behavior level
assignment mechanism is ineffective, while system call level assignment is still
effective. The second drawback is opposite with the first feature which separates
C&C connection from malicious behaviors. This is a fatal blow to BotTee because
they suppose bot command begins with recv or other network reception system
calls and ends with send or other network sending system calls.

We use an example to present the evasion procedure. In star architecture,
suppose S sends a command to P;. After P; received the command, Deviare
API [17] captures the recv command and begins to monitor process P;. Py
assigns the command to appropriate process, for example P,. Then P, performs
malicious behaviors and sends the result to P;. Then P; sends the result to .S,
while Deviare API captures the command and triggers Bot Command Identifier.
Then Bot Command Identifier analyses the system call sequences between recv
and send. And then the sequence will be sent to other components. Thus the
sequence of P; does not includes malicious behaviors and it will be detected as
benign. In this way, multiprocess bot can evade BotTee.

Detecting Bots. Detecting bots means the detection approach correlates ma-
licious behaviors with C&C connection. BotTracer detects bots through three
phases: automatic startup, establishment of C&C channel, and information har-
vesting/dispersion [18].

BotTracer highly relies on the behaviors of a bot process, and multiprocess
bot can effectively evade them. We will present the evasion mechanism using
star architecture. After the bootstrap phase, P;, P>, P; and P, are flagged as
suspicious processes. All the processes of multiprocess bot have to be started
automatically, thus they are not able to evade this phase. In the C&C estab-
lishment phase, only the server process P; establishes C&C channel and other
processes communicate with P;. Thus only P, is regarded as suspicious and oth-
ers can effectively evade this phase. In the last phase, the server process P; only
communicates with other processes and the C&C server. Thus it can evade this
phase because it does not perform malicious activities. In summary, the server
process P; can evade BotTracer in the last phase, other malicious processes can
evade in the C&C establishment phase. Thus multiprocess bots can effectively
evade this kind of detection approaches.

3 Critical Challenges of Multiprocess Bot

Although multiprocess bot is able to evade behavior-based bot detection ap-
proaches, it still has many critical challenges. We will present two of them:
bootstrap mechanism, and process communication mechanism.

Bootstrap Mechanisms. Conventional bots can be started automatically by
modifying the bootstrap process list or Registry entries [18]. This is essential for
bot to actively initialize C&C channel.Conventional bot which has one process
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only needs to start itself, while multiprocess bot need to start all the processes.
Multiprocess bot may run in the hosts stealthily, while the bootstrap of all the
processes is not easy to accomplish stealthily. If the bootstrap mechanism is not
well designed, multiprocess bot may be detected at the startup stage. Thus the
design of bootstrap mechanisms becomes a critical challenge of multiprocess bot.

Process Communication Mechanisms. Each process of multiprocess bot
has to communicate with others to accomplish malicious behaviors together. The
communication methods mainly include Interprocess Communications (IPC) and
covert channel communication.

IPC mechanisms are common and mainly include clipboard, Component Ob-
ject Model (COM), data copy, Dynamic Data Exchange (DDE), file mapping,
mailslots, pipes, Remote Procedure Call (RPC), and Windows sockets. Covert
channel is a computer security attack that can transfer information between pro-
cesses that are illegal to communicate by the computer security policy. Covert
channels are classified into storage and timing channels [19]. A variety of covert
channels have been proposed. Aciigmez et al. propose an attack named Sim-
ple Branch Prediction Analysis (SBPA) [20], which analyzes the CPU’s Branch
Predictor states through spying on a single quasi-parallel computation process.
Percival demonstrates that shared access to memory caches provides not only
an easily used high bandwidth covert channel between threads, but also permits
a malicious thread to monitor the execution of another thread [21].

IPC data may be easy to capture, while it may not be easy to identify the
suspicious data from the variety benign IPC data. Covert channels are difficult
to detect and changeable. Thus the process communication mechanisms make
the detection more difficult.

4 Experiments

In order to evaluate the above analyses, we develop a prototype of multiprocess
bot from Zeus bot[22]. First, we develop a single process bot, named Mini_Zeus,
which is a simplified version of Zeus. Then, we develop a multiprocess version of
Mini_Zeus. We use signature and behavior analysis to evaluate them.

4.1 Prototype Architecture

Mini_Zeus is a simplified version of Zeus bot. It has 4 major behaviors: (1) It
uses bootstrap mechanisms to make the bot process automatically started. (2)
It establishes C&C channel. Thus it can receive commands, execute commands,
and send information. (3) It captures http requests of Internet Explorer and
sends them to C&C server. (4) It will copy itself to the directory of system32,
and replace its time stamp with the time stamp of ntdll.dll.

The single process version of Mini_Zeus is shown in Figure 2(a). Mini_Zeus.exe
is the bot infection process. Once started, it will modify Registry to make it au-
tomatically start. Then it will use remote thread injection to make Fxplorer.exe
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Fig. 2. Architecture of Mini_Zeus

load HookCreateProcess.dll, and Svchost.exe load BotClient.dll. When HookCrre-
ateProcess.dll is loaded, it will hook function CreateProcess. When users try to
launch IE browser, HookHttpLib.dll will be injected to iexplorer.exe. This dll will
inject function HttpSendRequest, thus the information of post operation will be
injected and sent to C&C server. When BotClient.dll is loaded, Svchost.exe will
create a thread to communicate with C&C server. In summary, Mini_Zeus.exe
is the initial process and Svchost.eze is the running bot process.

Multiprocess version of Mini_Zeus is shown in Figure 2(b). Mini_Zeus.eze is
the bot infection process. Once started, it will use remote thread injection to
make Winlogon.exe load Schedule.dll. Schedule.dll firstly modify the Registry
to make Mini_Zeus.ere automatically started. It has three other major behav-
iors: (1) It will create NamedPipeServer.eze. (2) It will inject Communication.dll
into Svchost.eze. (3) It will inject HookCreateProcess.dll into Explorer.exe. Af-
ter these three steps, NamedPipeServer.exe will establish a named pipe server
and is responsible for receiving and sending information. Svhost.exe will cre-
ate process SendInfo.exe. SendInfo.exe will establish a named pipe to connect
with NamedPipeServer.eze. It also establishes C&C channel with C&C server.
When HookCreateProcess.dll is loaded by FEzplorer.exe, it will hook function
CreateProcess. Once users try to launch IE browser, HookHttpLib.dll will be
injected to iexplorer.exe. This dll will inject function HttpSendRequest and es-
tablish a named pipe, thus the information of post operation will be injected
and sent to NamedPipeServer.exe. In summary, Mini_Zeus.exe is the initial bot
process, and NamedPipeServer.exe, SendInfo.eze, and the controlled iexplore.exe
are the running bot processes.

4.2 Signature Analysis

We use VirusTotal to take a signature analysis of single process Mini_Zeus and
multiprocess Mini_Zeus. The results are shown in Table 2, the URL in the table is
the ID number and the real url is https://www.virustotal.com/en/file/URL/
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Table 2. Signature analysis results

File / URL Detection ratio
Single_Mini_Zeus.exe 28 / 47
71e82907ae2a45{c51071910b7db39a62675b190f26e444b796eb81dbdfad 77f
SendInfo.exe 6/ 33
5d86d1fabefb094034e192039a5d75d5f982205b1149f5684bf3e74dc6e63224
NamedPipeServer.exe 2/ a7
edb8897344e40b237¢c7d99ed6{5177£39c0b99f693a7b619e168c667058f0d55
Mini_Zeus.exe 13 / 47
0647dcd190af0e7519f2a4f00326502¢6186776be609c5494fe23cd6335fadab

analysis. For example, the result of the first url ishttps://www.virustotal.co
m/en/file/71e82907ae2a45fc51071910b7db39a62675b190f26e444b796eb81d
bdfad77f/analysis/.

The single process Mini_Zeus is detected as malicious by 28 of 47 antivirus
engines, benign by 19 antivirus engines. Mini_Zeus is detected as benign because
it has different signatures with Zeus bot, it is a simplified version and only has
the basic functions, and we distribute some malicious behaviors into dll files. In
Multiprocess Mini_Zeus, the main process Mini_Zeus.eze is detected as malicious
by 13 of 47 antivirus engines, as benign by 34 antivirus engines. The other two
processes are detected as malicious by 6 and 2. The main process is detected
as malicious because it uses remote thread injection. This injection mechanism
is a little obvious for antivirus engines, and we believe the number can further
decrease if we use different injection mechanisms. These two analysis reports
are able to indicate that multiprocess bot can effectively decrease the detection
probability compared with single process bot.

4.3 Behavior Analysis

In behavior analysis, we use host-based behavior analysis tool ThreatFire.
ThreatFire is a host-based behavior detection tool, we use it to comparatively
analyze our single process and multiprocess version of Mini_Zeus bot. The bot

B XKini_Tous Dot Sorvex Nanagoment Pags — Nicosort Tntornet Esplocoe
e &R S50 WEW IAD wHO)
it E

Client Detail Information

[ )
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B
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Fig. 3. Behavior analysis results
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host has the following configurations: Intel Q6600 quad-core processor, 2.40GHz,
2GB RAM, and Windows XP SP3 operating system. ThreatFire and Process
Hacker are installed. The server host has the same configurations, with XAMPP
and Google Chrome installed. We perform the following experiments:

1. We ran ThreatFire and adjusted its sensitive level to 5 (highest) in the bot
host. We ran our bot server program in the server host.

2. For each bot, we ran it to evaluate the kinds of alerts. We all click ” Allow
this process to continue” to make the bot started.

3. After the bot successfully started, we ran IE browser to test bot behaviors.

The results of our experiments are as follows:

1. In single process Mini_Zeus, there are 5 alerts, one for registering itself in
”"Windows System Startup” list. The other four are for remote thread injection.
Remote thread injection is not able to evade the detection because of its high
risk. C&C connection behavior is not detected because we create a thread to
connect with bot server.

2. In multiprocess Mini_Zeus, there are 2 alerts for Mini_Zeus.exe and they are
both remote thread injection. There are no alerts for other processes. There are
no alerts for register because we hook winlogon to make it register Mini_Zeus.

3. Both of these two bots can work well without alerts. Figure 3 shows mul-
tiprocess Mini_Zeus can successfully capture the post information.

The results indicate that multiprocess Mini_Zeus performs better than sin-
gle process Mini_Zeus. It can successfully reduce the number of alerts and the
risk level, however, there still exists some alerts. In summary, the experiments
indicate that multiprocess bot can effectively decrease the detection probability
compared with single process bot.

5 Extended Architectures of Multiprocess Bot

Besides star architecture, Lejun Fan et al. also present the relay race mode and
dual active mode. The relay race mode is the same with the ring in network
topology, thus we rename it as ring architecture. Since these two architectures
are well suited with network topology, we analyse other network topology archi-
tectures and find that multiprocess bot can also adopt these architectures. Thus
we present 6 more architectures and 4 extension rules as shown in Figure 4. We
hope these architectures with the extension rules can cover most situations.
Architecture 1: Bus Architecture. In bus network, all nodes are connected
to a single cable. Similarly, in the bus architecture of multiprocess bot all mali-
cious processes are connected to C&C server. As shown in Figure 4(a), malicious
processes P;, P>, and P3 connect to C&C server S. Malicious behaviors are as-
signed to several processes and each one only performs a part of them.
Architecture 2: Ring Architecture. A ring network is set up in a circular
architecture in which data travels around in one direction. Similarly, in the ring
architecture of multiprocess bot as shown in Figure 4(b), all the processes form
a one direction ring. The data travels along the ring and every process identifies
whether the data is for it.
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Fig. 4. Architectures of multiprocess bot

Architecture 3: Tree Architecture. Tree architecture is a hierarchical ar-
chitecture as shown in Figure 4(c). The highest level of this tree is the root
process P;. It communicates with C&C server S. In this architecture, only the
leaf processes perform malicious behaviors and other processes are the controller
of their child nodes. The data are passed along the tree.

Architecture 4: Fully Connected Mesh Architecture. There are two mesh
architectures, fully connected and partially connected. In fully connected mesh
architecture, the processes can communicate with each other as shown in Figure
4(d). P communicates with C&C server S and other processes. Py, P3, and P,
perform malicious behaviors and they can communicate with each other.
Architecture 5: Partially Connected Mesh Architecture. In partially
connected mesh architecture, some nodes connect with more than one. As shown
in Figure 4(e), P1, P>, and Ps connect with each other and P, only connects
with P;. This architecture is a subset of fully connected mesh with one specific
condition that P, should connect with all other processes directly or indirectly.
Architecture 6: Hybrid Architecture. The above 5 architectures and star
architecture are the basic architectures, while multiprocess bot can generate
more complicated architectures through combining them. For example, we can
combine bus with star architecture to generate a new architecture as shown in
Figure 4(f). S, Py, P2, and P3 forms the standard bus architecture, S, Py, Py, Ps,
and Py forms the standard star architecture.

Extension Rules. Besides these architectures, we define four extension rules.
The server process and malicious processes can create a child process, and we
can get the following rules.

(1) Rule 1: The server process communicates with C&C server and its child
process communicates with others. (2) Rule 2: The malicious process communi-
cates with others and its child process communicates with C&C server. (3) Rule
3: The malicious process communicates with others and its child process per-
forms malicious behaviors. (4) Rule 4: The malicious process performs malicious
behaviors and its child process communicates with others.
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Figure 4(g) is an extension architecture of ring using Rule 3. Each of the orig-
inal malicious processes creates a child process to perform malicious behaviors.
Through these rules, the behaviors of all the processes can be minimized and
may cause great confusions to behavior-based bot detection approaches.

6 Related Work

Ramilli M et at. propose an attack mode named multiprocess malware [10]. If a
malware is divided into multiple coordinated processes, no sequence of system
calls executed by one process will match the behavioral signatures. Thus this
attack mode can evade anti-virus detection tools. However, it also faces many
problems, such as the division of malware, the communication of multiple pro-
cesses, the bootstrp of multiple processes, and the execution sequence of multiple
processes. Lejun Fan et al. use dynamic analysis approaches to detect privacy
theft malware [11]. They also monitor the related processes of suspicious process
to discover the collaborative behavior of multiprocess privacy theft malwares.
They propose three important architectures of multiprocess malwares, relay trace
mode, master slave mode, and dual active mode. Weiqin Ma et al. present a new
generation of attacks, namely “shadow attacks”, to evade current behavior-based
malware detections by dividing a malware into multiple “shadow processes” [12].
They analyze the communication between different processes, and the division
of a malware into multiple processes. They also develop a compiler-level pro-
totype, AutoShadow, to automatically transform a malware to several shadow
processes.

These works all target on multiprocess malwares, however, we target on the
attack of multiprocess bot. Although bot is one category of malwares, it has
different architectures and features and can cause more serious threat. The ar-
chitectures are more complicated than others, especially the C&C infrastructure.
We propose some specific features of multiprocess bot, and deeply analyze why
existing behavior-based approaches are less effective with multiprocess bot.

Virtual machine based malware detection approaches, Holography, Anubis,
and CWSandbox , etc. can track multiprocess malwares, while these approaches
run malwares in an isolated environment. Many novel bots can detect whether
they are running in a virtual machine before they perform malicious behaviors.
Also, these approaches are not practical for protecting hosts of normal users.

7 Limitations and Future Work

There are several limitations in our work. (1) We theoretically analyzed behavior-
based bot detection approaches and did not implement them. There are many
challenges when we try to implement them, such as the large-scale data, and
the unclear implementation details. If we can implement these approaches to
evaluate multiprocess bot we can get a more convincing result. (2) Mini_Zeus is
a simplified version of Zeus, and many malicious behaviors are not implemented.
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However, the primary behaviors of Zeus are included and more than half anti-
virus engines detect it as malicious. The experiment results are still clear. (3) In
our experiment about behavior detection, we only use one detection engine to
analyze. We will try to use more behavior-based detection approaches to evaluate
multiprocess bot.

We are very interested in multiprocess bot and this is a primary work. We will
perform the following further works: (1) We will try to implement some behavior-
based bot detection approaches, and perform some systematic tests about the
concrete reasons why existing behavior-based approaches are less effective with
multiprocess bot. (2) We will try to find or implement more instances of multi-
process bots to perform a large-scale experiments. (3) We will deeply analyze the
advantages and disadvantages of multiprocess bot, and try to find the effective
detection approaches about multiprocess bot.

8 Conclusion

In this paper we analyze multiprocess bot in detail. First, we identify two spe-
cific features of multiprocess bot, separating C&C connection from malicious
behaviors and assigning malicious behaviors to several processes. Based on the
two features, we theoretically analyze why existing behavior-based bot detec-
tion approaches are less effective with multiprocess bot. After that we present
two critical challenges of implementing multiprocess bot. Then we implement a
single process and a multiprocess bot. We use signature and behavior based de-
tection approaches to evaluate them. The results indicate that multiprocess bot
can effectively decrease the detection probability compared with single process
bot. Finally we propose the possible multiprocess architectures and extension
rules, and hope they can cover most situations of multiprocess bot.
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