A Mulitiprocess Mechanism of Evading
Behavior-Based Bot Detection Approaches

Yuede Ji, Yukun He, Dewei Zhu, Qiang Li*, and Dong Guo

College of Computer Science and Technology, Jilin University,
Changchun China 130012
{jiyd12,heyk12, zhudws509}Cmails. jlu.edu.cn,
{li_qgiang, guodong}@jlu.edu.cn

Abstract. Botnet has become one of the most serious threats to In-
ternet security. According to detection location, existing approaches can
be classified into two categories: host-based, and network-based. Among
host-based approaches, behavior-based are more practical and effective
because they can detect the specific malicious process. However, most of
these approaches target on conventional single process bot. If a bot is
separated into two or more processes, they will be less effective. In this
paper, we propose a new evasion mechanism of bot, multiprocess mecha-
nism. We first identify two specific features of multiprocess bot: separat-
ing C&C connection from malicious behaviors, and assigning malicious
behaviors to several processes. Then we further theoretically analyze why
behavior-based bot detection approaches are less effective with multipro-
cess bot. After that, we present two critical challenges of implementing
multiprocess bot. Then we implement a single process and multiprocess
bot, and use signature and behavior detection approaches to evaluate
them. The results indicate that multiprocess bot can effectively decrease
the detection probability compared with single process bot. Finally we
propose the possible multiprocess bot architectures and extension rules,
and expect they can cover most situations.

1 Introduction

Botnet has become one of the most serious threats to Internet security. A bot
is a host compromised by malwares under the control of the botmaster through
Command and Control (C&C) channel. A large scale of bots form a botnet. The
botmaster can utilize botnets to conduct various cyber crimes such as spread-
ing malwares, DDoS attacks, spamming, and phishing. Bots always try to hide
themselves from detection tools to accomplish malicious behaviors.

According to detection location, existing approaches can be divided into two
categories: host-based and network-based. (1) Host-based approaches mainly in-
clude signature- and behavior-based approaches [1]. Signature-based approaches
mainly extract the feature information of the suspicious program to match with

* Corresponding Author.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 75-89, 2014.
© Springer International Publishing Switzerland 2014

76 Y. Jiet al

a knowledge database [2]. Behavior-based detection approaches monitor the ab-
normal behaviors on hosts to detect bot [3-6]. (2) Network-based approaches
mainly analyze network traffic to filter out bot host [7-9].

Among host-based detection approaches, behavior-based approaches are more
practical and effective because they can detect the specific malicious process.
However, most behavior-based approaches are based on single process or related
family processes. If a bot is separated into two or more processes, these ap-
proaches will be less effective. Multiprocess bot has two specific features as we
proposed in this paper: (1) It can separate C&C connection from malicious
behaviors; (2) It can assign malicious behaviors to several processes. As we
know, the biggest difference between bot and other malwares is the C&C in-
frastructure. If the C&C connection is separated from malicious behaviors, the
detection approaches correlating network behaviors with malicious behaviors will
be less effective. Similarly, if malicious behaviors are assigned to several processes
and each process only performs a part of malicious behaviors, the suspicion
level may drop to the same with benign process. Thus, malicious behaviors
detection approaches will be less effective. If bot can successfully evade exist-
ing behavior-based detection approaches, it will cause more threats to Internet
security.

Multiprocess malware has been analyzed by some researchers. Ramilli M et
al. propose the idea of multiprocess malware and prove that the malware divided
into several processes will effectively evade the detection of most anti-virus en-
gines [10]. Lejun Fan et al. define three important architectures of multiprocess
malwares, relay trace, master slave, and dual active mode [11]. Weiqin Ma et al.
present a new attack, namely “shadow attacks”, which divides a malware into
multiple “shadow processes” [12]. Experiments indicate that multiprocess mal-
wares can effectively evade the detection of behavior-based detection approaches.
Multiprocess bots have been discovered [13], while they have not been studied in
detail. If multiprocess bots really explodes, we know nothing about their archi-
tectures, communication mechanisms, and other critical knowledge, then they
will cause great threats. Thus analyzing them will be very significant.

Our work makes the following contributions:

(1) We identify two specific features of multiprocess bot: separating C&C
connection from malicious behaviors, and assigning malicious behaviors to sev-
eral processes. Then we theoretically analyze why existing behavior-based bot
detection approaches are less effective with multiprocess bot according to four
categories of behavior-based approaches.

(2) We present two critical challenges of implementing multiprocess bot, and
implement a single process and multiprocess bot from a simplified version of
Zeus. We use signature and behavior based detection approaches to evaluate
them. The results indicate that multiprocess bot can effectively decrease the
detection probability. Then we propose other multiprocess bot architectures and
extension rules, and expect they can cover most situations.

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 7

2 Evasion Mechanism of Multiprocess Bot

We first present the two specific features of multiprocess bots, then analyze why
they are able to evade behavior bot detection approaches.

2.1 Specific Features of Multiprocess Bot

There are two specific differences between multiprocess and conventional bot:
separating C&C connection from malicious behaviors, and assigning malicious
behaviors to several processes. Lejun Fan et al. propose a typical multiprocess
architecture master slave mode [11]. We rename it as star architecture using the
terminology of network topology. In star network topology, each host is connected
to a central hub with a point-to-point connection. Similarly, as shown in Figure
1, process P; acts as the central hub, connects with C&C server S and other
malicious processes P», P53, and P,. In Figure 1, the circle denotes benign process,
the hexagon denotes malicious process, S denotes C&C server, and P; denotes
different processes. We will analyze the two features using star architecture.

Fig. 1. Star Architecture of Multiprocess Bot

Feature 1: Separating C&C Connection from Malicious Behaviors. The
first feature of multiprocess bot is separating C&C connection from malicious
behaviors. It means that the process communicating with C&C server has no
other malicious behaviors, and the malicious processes do not communicate with
C&C server directly. We regard this specific process as server process. We will
analyze this feature using the star architecture as shown in Figure 1.

In star architecture, P; is the server process that establishes C&C channel
with server S. P», P35, and P4 are the malicious processes. Suppose the botmas-
ter sends a command to the multiprocess bot and we will explore the whole
execution procedure. C&C server S sends a command to P;. In order to evade
track techniques like taint analysis [14], the server process can transform data
flow dependence into control flow dependence or other obfuscation techniques.
After the transformation, the server process sends the command to a certain
process using process communication mechanisms. This process performs mali-
cious behaviors in accordance with the command. After execution, the malicious
process sends the result data to the server process. The malicious process can
also use obfuscation techniques to better evade track techniques. After receiving
the result data, the server process sends them to the C&C server.

78 Y. Jiet al

In this feature, the server process P; only has network behaviors, and the
malicious processes P;, P>, and P5 only perform a part of all malicious behaviors.
Some behavior-based bot detection approaches detect the process which only
has network behaviors as benign, and the process without network behaviors
will be neglected. Through transforming data flow dependence into control flow
dependence or other obfuscation mechanisms, the server process is separated
from other malicious processes. Thus this feature is able to evade the detection
approaches correlating network behaviors with malicious behaviors. However it
may not be able to evade approaches which only detect host malicious behaviors.

Feature 2: Assigning Malicious Behaviors to Several Processes. The
second feature is that malicious behaviors are assigned to several processes.
Thus, each process only performs a small part of whole malicious behaviors.
This feature can effectively evade malicious behavior detection approaches with
well designed number of malicious behaviors each process has. Thus, the number
becomes a critical challenge. We will use three phases to explain how to define
the number and prove that multiprocess bot is able to evade behavior detection.

We utilize the notations in Table 1 to explain this feature. In Table 1, C'
denotes the critical system call set, a; denotes the ith system call, and there are
k system calls in total. f; denotes the ith behavior which has num(f;) system
calls, and each one of them is denoted as aé.. numl; denotes the number of critical
system calls of each behavior f;, and num2; denotes the number of behaviors
that critical system call a; is in.

Table 1. Notations of system calls and behaviors

Description Set
critical system call set C={ai,...,a;,...,a}
system call set of each behavior fi=AHal,... ,a;i, RN azmm(fv)}
i

number of critical system calls
of each behavior f;
number of behaviors that
critical system call a; is in

Numl = {numli,...,numl;,...,numl,}

Num?2 = {num?21,...,num2;,...,num2y}

Phase 1: Suppose we extract the system calls of known malicious behaviors
to build the system call set f; of each behavior. We build the critical system call
set C' using the similar methods of building Common APT in [15]. The system
calls in the critical set are frequently called by these malicious behaviors.

Phase 2: We match every system call a;. of each set f; with critical set C to
generate numl;, and after matching all we can get set Numl. It denotes the
number of critical system calls of each behavior. We match every system call a;
of critical set C' with each set f; to generate num?2;, and then Num?2. It denotes
the number of behaviors that call a specific critical system call.

Phase 3: Based on set Numl and Num2 we can get two assignment mecha-
nisms: behavior level and system call level assignment mechanism. In behavior
level assignment, we sort the behaviors in descending order in set Num1. The top

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 79

behaviors represent the most frequent behaviors. We can separate the top behav-
iors with each other to average the critical behavior numbers of each process. In
this way, we can decrease the malicious grain size of each process. We can assign
the sorted set to the processes in S shape, and other assignment mechanisms like
arithmetic, random walk, etc. can also be used. Set Num2 is about system call
level assignment mechanism. We also sort the system calls in descending order.
We assign top system calls to different processes or even a process only perform-
ing one critical system call. This assignment mechanism is more complicated than
behavior level.

We summarized the whole procedure in Algorithm 1. A multiprocess bot using
either of them will significantly improve the evasion probability. If a multiprocess
bot uses both of them, it will be very difficult to detect. Thus this feature can
effectively evade behaviors detection approaches.

Algorithm 1. Process Assignment Algorithm

build the system call set f; for each malicious behavior
build the critical system call set C
match each system call set f; with C' to generate Num1l
match critical set C with each system call set f; to generate Num?2
t = number of processes
sort Numl in descending order
for i from 1 to t do

assign behavior 4,2+t +1—14,2xt+41,... to process ¢
end for
. sort Num?2 in descending order
. for i from 1 to t do
assign system call 4,2t 4+ 1 —14,2*%t+1,... to process @
. end for

® N O W

=
WO

2.2 Evading Behavior-Based Bot Detection Approaches

According to detection targets, we classify existing behavior-based bot detec-
tion approaches into 4 categories: detecting C&C connections, detecting mali-
cious behaviors, detecting bot commands, and detecting bots (correlating C&C
connection with malicious behaviors). Based on the two specific features, we uti-
lize an example approach of each category to analyse why behavior-based bot
detection approaches are less effective with multiprocess bot.

Detecting C&C Connections. In this category, detection approaches detect
bots based on C&C connections on host and JACKSTRAWS [16] is a typical
one. It associates with each network connection a behavior graph that captures
the system calls that lead to the connection and operate on returned data.

80 Y. Jiet al

We use star architecture in Figure 1 to present the evasion procedure. The
server process P; establishes connection with C&C server S and it will be cap-
tured by JACKSTRAWS. P; can transform data flow dependence into control
flow and distributes the corresponding data to appropriate processes using pro-
cess communication mechanisms. The malicious processes P», P3, and P, perform
fine-grained malicious behaviors which have nothing to do with network connec-
tions. After finishing the malicious behaviors, they will send the result data to
P;. Then P; will upload them to C&C server. In this way, multiprocess bot can
separate network connection from malicious behaviors.

According to JACKSTRAWS, the captured network connection alone is not
enough for being detected as malicious C&C. What’s more, if the connection
is encrypted, the detection will be more difficult. They mention three failed
detection cases and the first is that the bot process did not finish its malicious
behaviors after receiving commands. In this way, multiprocess bot can evade this
detection approach.

Detecting Malicious Behaviors. Approaches in this category detect bots
based on host malicious behaviors. Martignoni et al. propose an typical approach
using hierarchical behavior graphs to detect malicious behaviors.

This approach is less effective with multiprocess bot. First, it monitors the
execution of one single process, while in multiprocess bot, there are several pro-
cesses performing malicious behaviors. Specifically, multiprocess bot can evade
taint analysis from transforming data flow dependence into control flow, thus
this approach is not able to detect any relationship between processes.

Second, the first feature of multiprocess bot is separating C&C connection
from malicious processes. As shown in star architecture, S only communicates
with the server process P;. Based on this feature, P; only has network behaviors,
thus in behavior graphs it is similar with benign network processes. The other
malicious processes perform a part of malicious behaviors without C&C connec-
tion, thus in behavior graphs they may not be the same with malicious behavior
graphs. However, if a process still performs critical malicious behaviors, it can
also be detected.

Third, the second feature is assigning malicious behaviors to several processes.
As we discussed before, there are two separation mechanisms: behavior and
system call level. A multiprocess bot using these two mechanisms can make the
event sequence of each process different from any malicious behavior graph. Thus
this approach is less effective with multiprocess bot.

Detecting Bot Commands. In this category, detection approaches detect
bots based on bot commands. BotTee [15] is a typical approach of identifying
bot commands by run time execution monitoring.

BotTee can effectively detect conventional bot commands. However, it has
two obvious drawbacks: it monitors the execution of single process; it highly
relies on network related system calls. The first drawback is opposite with the
second feature of multiprocess bot which assigns malicious behaviors to several

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 81

processes. BotTee detects bot commands in system call level thus behavior level
assignment mechanism is ineffective, while system call level assignment is still
effective. The second drawback is opposite with the first feature which separates
C&C connection from malicious behaviors. This is a fatal blow to BotTee because
they suppose bot command begins with recv or other network reception system
calls and ends with send or other network sending system calls.

We use an example to present the evasion procedure. In star architecture,
suppose S sends a command to P;. After P; received the command, Deviare
API [17] captures the recv command and begins to monitor process P;. Py
assigns the command to appropriate process, for example P,. Then P, performs
malicious behaviors and sends the result to P;. Then P; sends the result to .S,
while Deviare API captures the command and triggers Bot Command Identifier.
Then Bot Command Identifier analyses the system call sequences between recv
and send. And then the sequence will be sent to other components. Thus the
sequence of P; does not includes malicious behaviors and it will be detected as
benign. In this way, multiprocess bot can evade BotTee.

Detecting Bots. Detecting bots means the detection approach correlates ma-
licious behaviors with C&C connection. BotTracer detects bots through three
phases: automatic startup, establishment of C&C channel, and information har-
vesting/dispersion [18].

BotTracer highly relies on the behaviors of a bot process, and multiprocess
bot can effectively evade them. We will present the evasion mechanism using
star architecture. After the bootstrap phase, P;, P>, P; and P, are flagged as
suspicious processes. All the processes of multiprocess bot have to be started
automatically, thus they are not able to evade this phase. In the C&C estab-
lishment phase, only the server process P; establishes C&C channel and other
processes communicate with P;. Thus only P, is regarded as suspicious and oth-
ers can effectively evade this phase. In the last phase, the server process P; only
communicates with other processes and the C&C server. Thus it can evade this
phase because it does not perform malicious activities. In summary, the server
process P; can evade BotTracer in the last phase, other malicious processes can
evade in the C&C establishment phase. Thus multiprocess bots can effectively
evade this kind of detection approaches.

3 Critical Challenges of Multiprocess Bot

Although multiprocess bot is able to evade behavior-based bot detection ap-
proaches, it still has many critical challenges. We will present two of them:
bootstrap mechanism, and process communication mechanism.

Bootstrap Mechanisms. Conventional bots can be started automatically by
modifying the bootstrap process list or Registry entries [18]. This is essential for
bot to actively initialize C&C channel.Conventional bot which has one process

82 Y. Jiet al

only needs to start itself, while multiprocess bot need to start all the processes.
Multiprocess bot may run in the hosts stealthily, while the bootstrap of all the
processes is not easy to accomplish stealthily. If the bootstrap mechanism is not
well designed, multiprocess bot may be detected at the startup stage. Thus the
design of bootstrap mechanisms becomes a critical challenge of multiprocess bot.

Process Communication Mechanisms. Each process of multiprocess bot
has to communicate with others to accomplish malicious behaviors together. The
communication methods mainly include Interprocess Communications (IPC) and
covert channel communication.

IPC mechanisms are common and mainly include clipboard, Component Ob-
ject Model (COM), data copy, Dynamic Data Exchange (DDE), file mapping,
mailslots, pipes, Remote Procedure Call (RPC), and Windows sockets. Covert
channel is a computer security attack that can transfer information between pro-
cesses that are illegal to communicate by the computer security policy. Covert
channels are classified into storage and timing channels [19]. A variety of covert
channels have been proposed. Aciigmez et al. propose an attack named Sim-
ple Branch Prediction Analysis (SBPA) [20], which analyzes the CPU’s Branch
Predictor states through spying on a single quasi-parallel computation process.
Percival demonstrates that shared access to memory caches provides not only
an easily used high bandwidth covert channel between threads, but also permits
a malicious thread to monitor the execution of another thread [21].

IPC data may be easy to capture, while it may not be easy to identify the
suspicious data from the variety benign IPC data. Covert channels are difficult
to detect and changeable. Thus the process communication mechanisms make
the detection more difficult.

4 Experiments

In order to evaluate the above analyses, we develop a prototype of multiprocess
bot from Zeus bot[22]. First, we develop a single process bot, named Mini_Zeus,
which is a simplified version of Zeus. Then, we develop a multiprocess version of
Mini_Zeus. We use signature and behavior analysis to evaluate them.

4.1 Prototype Architecture

Mini_Zeus is a simplified version of Zeus bot. It has 4 major behaviors: (1) It
uses bootstrap mechanisms to make the bot process automatically started. (2)
It establishes C&C channel. Thus it can receive commands, execute commands,
and send information. (3) It captures http requests of Internet Explorer and
sends them to C&C server. (4) It will copy itself to the directory of system32,
and replace its time stamp with the time stamp of ntdll.dll.

The single process version of Mini_Zeus is shown in Figure 2(a). Mini_Zeus.exe
is the bot infection process. Once started, it will modify Registry to make it au-
tomatically start. Then it will use remote thread injection to make Fxplorer.exe

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 83

. Mini_Zeus.exe
------- Mini_Zeus.exe |------
DIl

Dillrject: _ . I
HookCreate- ject: Inject DIl to Earget Process
Procdss.dll BotClient.dll
- . exe Dillnject:
Crdate Process w - TiookCreatePdocess.dll
DilEnject:
| Explorer.exe | Svchost.exe Communieation.dil
NamedPipe-
A P | Svchost.exe | Explorer.exe
Server.exe
Dillifject:
HookHtfpLib.dll A) Create|Process
Inforthation ~ Create|Process
To by Sent Dilnject: HogkHttpLib.dll

iexplore.exe SendInfo.exe iexplore.exe
Control Commands ‘

i A HII[*chllcsl
Http Request Megages
...... C&C
Server

(a) (b)

Fig. 2. Architecture of Mini_Zeus

load HookCreateProcess.dll, and Svchost.exe load BotClient.dll. When HookCrre-
ateProcess.dll is loaded, it will hook function CreateProcess. When users try to
launch IE browser, HookHttpLib.dll will be injected to iexplorer.exe. This dll will
inject function HttpSendRequest, thus the information of post operation will be
injected and sent to C&C server. When BotClient.dll is loaded, Svchost.exe will
create a thread to communicate with C&C server. In summary, Mini_Zeus.exe
is the initial process and Svchost.eze is the running bot process.

Multiprocess version of Mini_Zeus is shown in Figure 2(b). Mini_Zeus.eze is
the bot infection process. Once started, it will use remote thread injection to
make Winlogon.exe load Schedule.dll. Schedule.dll firstly modify the Registry
to make Mini_Zeus.ere automatically started. It has three other major behav-
iors: (1) It will create NamedPipeServer.eze. (2) It will inject Communication.dll
into Svchost.eze. (3) It will inject HookCreateProcess.dll into Explorer.exe. Af-
ter these three steps, NamedPipeServer.exe will establish a named pipe server
and is responsible for receiving and sending information. Svhost.exe will cre-
ate process SendInfo.exe. SendInfo.exe will establish a named pipe to connect
with NamedPipeServer.eze. It also establishes C&C channel with C&C server.
When HookCreateProcess.dll is loaded by FEzplorer.exe, it will hook function
CreateProcess. Once users try to launch IE browser, HookHttpLib.dll will be
injected to iexplorer.exe. This dll will inject function HttpSendRequest and es-
tablish a named pipe, thus the information of post operation will be injected
and sent to NamedPipeServer.exe. In summary, Mini_Zeus.exe is the initial bot
process, and NamedPipeServer.exe, SendInfo.eze, and the controlled iexplore.exe
are the running bot processes.

4.2 Signature Analysis

We use VirusTotal to take a signature analysis of single process Mini_Zeus and
multiprocess Mini_Zeus. The results are shown in Table 2, the URL in the table is
the ID number and the real url is https://www.virustotal.com/en/file/URL/

84 Y. Jiet al

Table 2. Signature analysis results

File / URL Detection ratio
Single_Mini_Zeus.exe 28 / 47
71e82907ae2a45{c51071910b7db39a62675b190f26e444b796eb81dbdfad 77f
SendInfo.exe 6/ 33
5d86d1fabefb094034e192039a5d75d5f982205b1149f5684bf3e74dc6e63224
NamedPipeServer.exe 2/ a7
edb8897344e40b237¢c7d99ed6{5177£39c0b99f693a7b619e168c667058f0d55
Mini_Zeus.exe 13 / 47
0647dcd190af0e7519f2a4f00326502¢6186776be609c5494fe23cd6335fadab

analysis. For example, the result of the first url ishttps://www.virustotal.co
m/en/file/71e82907ae2a45fc51071910b7db39a62675b190f26e444b796eb81d
bdfad77f/analysis/.

The single process Mini_Zeus is detected as malicious by 28 of 47 antivirus
engines, benign by 19 antivirus engines. Mini_Zeus is detected as benign because
it has different signatures with Zeus bot, it is a simplified version and only has
the basic functions, and we distribute some malicious behaviors into dll files. In
Multiprocess Mini_Zeus, the main process Mini_Zeus.eze is detected as malicious
by 13 of 47 antivirus engines, as benign by 34 antivirus engines. The other two
processes are detected as malicious by 6 and 2. The main process is detected
as malicious because it uses remote thread injection. This injection mechanism
is a little obvious for antivirus engines, and we believe the number can further
decrease if we use different injection mechanisms. These two analysis reports
are able to indicate that multiprocess bot can effectively decrease the detection
probability compared with single process bot.

4.3 Behavior Analysis

In behavior analysis, we use host-based behavior analysis tool ThreatFire.
ThreatFire is a host-based behavior detection tool, we use it to comparatively
analyze our single process and multiprocess version of Mini_Zeus bot. The bot

B XKini_Tous Dot Sorvex Nanagoment Pags — Nicosort Tntornet Esplocoe
e &R S50 WEW IAD wHO)
it E

Client Detail Information

[)
10.0.2.2 @ 2015-05-20 12:21:41
10.0.2.2 @ 2015-05-20 12:29:11
10.0.2.2 @ 2015-05-20 12:32:56
10.0.2.2 @ 2015-05-20 12:45:01

10.0.2.2 @ 2013-05-29 14:20:00
B

retum to clien: list v

Fig. 3. Behavior analysis results

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 85

host has the following configurations: Intel Q6600 quad-core processor, 2.40GHz,
2GB RAM, and Windows XP SP3 operating system. ThreatFire and Process
Hacker are installed. The server host has the same configurations, with XAMPP
and Google Chrome installed. We perform the following experiments:

1. We ran ThreatFire and adjusted its sensitive level to 5 (highest) in the bot
host. We ran our bot server program in the server host.

2. For each bot, we ran it to evaluate the kinds of alerts. We all click ” Allow
this process to continue” to make the bot started.

3. After the bot successfully started, we ran IE browser to test bot behaviors.

The results of our experiments are as follows:

1. In single process Mini_Zeus, there are 5 alerts, one for registering itself in
”"Windows System Startup” list. The other four are for remote thread injection.
Remote thread injection is not able to evade the detection because of its high
risk. C&C connection behavior is not detected because we create a thread to
connect with bot server.

2. In multiprocess Mini_Zeus, there are 2 alerts for Mini_Zeus.exe and they are
both remote thread injection. There are no alerts for other processes. There are
no alerts for register because we hook winlogon to make it register Mini_Zeus.

3. Both of these two bots can work well without alerts. Figure 3 shows mul-
tiprocess Mini_Zeus can successfully capture the post information.

The results indicate that multiprocess Mini_Zeus performs better than sin-
gle process Mini_Zeus. It can successfully reduce the number of alerts and the
risk level, however, there still exists some alerts. In summary, the experiments
indicate that multiprocess bot can effectively decrease the detection probability
compared with single process bot.

5 Extended Architectures of Multiprocess Bot

Besides star architecture, Lejun Fan et al. also present the relay race mode and
dual active mode. The relay race mode is the same with the ring in network
topology, thus we rename it as ring architecture. Since these two architectures
are well suited with network topology, we analyse other network topology archi-
tectures and find that multiprocess bot can also adopt these architectures. Thus
we present 6 more architectures and 4 extension rules as shown in Figure 4. We
hope these architectures with the extension rules can cover most situations.
Architecture 1: Bus Architecture. In bus network, all nodes are connected
to a single cable. Similarly, in the bus architecture of multiprocess bot all mali-
cious processes are connected to C&C server. As shown in Figure 4(a), malicious
processes P;, P>, and P3 connect to C&C server S. Malicious behaviors are as-
signed to several processes and each one only performs a part of them.
Architecture 2: Ring Architecture. A ring network is set up in a circular
architecture in which data travels around in one direction. Similarly, in the ring
architecture of multiprocess bot as shown in Figure 4(b), all the processes form
a one direction ring. The data travels along the ring and every process identifies
whether the data is for it.

86 Y. Jiet al

@iﬁz{‘“

(a) Bus (b) Ring (c) Tree (d) Fully connected
mesh

(e) Partially connected
mesh

(f) Hybrid of bus and star (g) Extension of ring

Fig. 4. Architectures of multiprocess bot

Architecture 3: Tree Architecture. Tree architecture is a hierarchical ar-
chitecture as shown in Figure 4(c). The highest level of this tree is the root
process P;. It communicates with C&C server S. In this architecture, only the
leaf processes perform malicious behaviors and other processes are the controller
of their child nodes. The data are passed along the tree.

Architecture 4: Fully Connected Mesh Architecture. There are two mesh
architectures, fully connected and partially connected. In fully connected mesh
architecture, the processes can communicate with each other as shown in Figure
4(d). P communicates with C&C server S and other processes. Py, P3, and P,
perform malicious behaviors and they can communicate with each other.
Architecture 5: Partially Connected Mesh Architecture. In partially
connected mesh architecture, some nodes connect with more than one. As shown
in Figure 4(e), P1, P>, and Ps connect with each other and P, only connects
with P;. This architecture is a subset of fully connected mesh with one specific
condition that P, should connect with all other processes directly or indirectly.
Architecture 6: Hybrid Architecture. The above 5 architectures and star
architecture are the basic architectures, while multiprocess bot can generate
more complicated architectures through combining them. For example, we can
combine bus with star architecture to generate a new architecture as shown in
Figure 4(f). S, Py, P2, and P3 forms the standard bus architecture, S, Py, Py, Ps,
and Py forms the standard star architecture.

Extension Rules. Besides these architectures, we define four extension rules.
The server process and malicious processes can create a child process, and we
can get the following rules.

(1) Rule 1: The server process communicates with C&C server and its child
process communicates with others. (2) Rule 2: The malicious process communi-
cates with others and its child process communicates with C&C server. (3) Rule
3: The malicious process communicates with others and its child process per-
forms malicious behaviors. (4) Rule 4: The malicious process performs malicious
behaviors and its child process communicates with others.

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 87

Figure 4(g) is an extension architecture of ring using Rule 3. Each of the orig-
inal malicious processes creates a child process to perform malicious behaviors.
Through these rules, the behaviors of all the processes can be minimized and
may cause great confusions to behavior-based bot detection approaches.

6 Related Work

Ramilli M et at. propose an attack mode named multiprocess malware [10]. If a
malware is divided into multiple coordinated processes, no sequence of system
calls executed by one process will match the behavioral signatures. Thus this
attack mode can evade anti-virus detection tools. However, it also faces many
problems, such as the division of malware, the communication of multiple pro-
cesses, the bootstrp of multiple processes, and the execution sequence of multiple
processes. Lejun Fan et al. use dynamic analysis approaches to detect privacy
theft malware [11]. They also monitor the related processes of suspicious process
to discover the collaborative behavior of multiprocess privacy theft malwares.
They propose three important architectures of multiprocess malwares, relay trace
mode, master slave mode, and dual active mode. Weiqin Ma et al. present a new
generation of attacks, namely “shadow attacks”, to evade current behavior-based
malware detections by dividing a malware into multiple “shadow processes” [12].
They analyze the communication between different processes, and the division
of a malware into multiple processes. They also develop a compiler-level pro-
totype, AutoShadow, to automatically transform a malware to several shadow
processes.

These works all target on multiprocess malwares, however, we target on the
attack of multiprocess bot. Although bot is one category of malwares, it has
different architectures and features and can cause more serious threat. The ar-
chitectures are more complicated than others, especially the C&C infrastructure.
We propose some specific features of multiprocess bot, and deeply analyze why
existing behavior-based approaches are less effective with multiprocess bot.

Virtual machine based malware detection approaches, Holography, Anubis,
and CWSandbox , etc. can track multiprocess malwares, while these approaches
run malwares in an isolated environment. Many novel bots can detect whether
they are running in a virtual machine before they perform malicious behaviors.
Also, these approaches are not practical for protecting hosts of normal users.

7 Limitations and Future Work

There are several limitations in our work. (1) We theoretically analyzed behavior-
based bot detection approaches and did not implement them. There are many
challenges when we try to implement them, such as the large-scale data, and
the unclear implementation details. If we can implement these approaches to
evaluate multiprocess bot we can get a more convincing result. (2) Mini_Zeus is
a simplified version of Zeus, and many malicious behaviors are not implemented.

88 Y. Jiet al

However, the primary behaviors of Zeus are included and more than half anti-
virus engines detect it as malicious. The experiment results are still clear. (3) In
our experiment about behavior detection, we only use one detection engine to
analyze. We will try to use more behavior-based detection approaches to evaluate
multiprocess bot.

We are very interested in multiprocess bot and this is a primary work. We will
perform the following further works: (1) We will try to implement some behavior-
based bot detection approaches, and perform some systematic tests about the
concrete reasons why existing behavior-based approaches are less effective with
multiprocess bot. (2) We will try to find or implement more instances of multi-
process bots to perform a large-scale experiments. (3) We will deeply analyze the
advantages and disadvantages of multiprocess bot, and try to find the effective
detection approaches about multiprocess bot.

8 Conclusion

In this paper we analyze multiprocess bot in detail. First, we identify two spe-
cific features of multiprocess bot, separating C&C connection from malicious
behaviors and assigning malicious behaviors to several processes. Based on the
two features, we theoretically analyze why existing behavior-based bot detec-
tion approaches are less effective with multiprocess bot. After that we present
two critical challenges of implementing multiprocess bot. Then we implement a
single process and a multiprocess bot. We use signature and behavior based de-
tection approaches to evaluate them. The results indicate that multiprocess bot
can effectively decrease the detection probability compared with single process
bot. Finally we propose the possible multiprocess architectures and extension
rules, and hope they can cover most situations of multiprocess bot.

Acknowledgment. This work is supported by the National Natural Science
Foundation of China under Grant No. 61170265, Fundamental Research Fund
of Jilin University under Grant No. 201103253.

References

1. Silva, S.S.C., Silva, R.M.P., Pinto, R.C.G., Salles, R.M.: Botnets: A survey. Com-
puter Networks (2012)

2. Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Proceedings of the First Conference on First Workshop on Hot Topics
in Understanding Botnets, Cambridge, MA, p. 8 (2007)

3. Stinson, E., Mitchell, J.C.: Characterizing bots remote control behavior. In:
Hammerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89-108.
Springer, Heidelberg (2007)

4. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Ef-
fective and efficient malware detection at the end host. In: Proceedings of the 18th
Conference on USENIX Security Symposium, pp. 351-366. USENIX Association
(2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

A Mulitiprocess Mechanism of Evading Behavior-Based Bot 89

Shin, S., Xu, Z., Gu, G.: Effort: Efficient and effective bot malware detection. In:
2012 Proceedings of the IEEE INFOCOM, pp. 28462850 (2012)

Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A layered ar-
chitecture for detecting malicious behaviors. In: Lippmann, R., Kirda, E., Tracht-
enberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78-97. Springer, Heidelberg
(2008)

Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: Detecting
malware infection through ids-driven dialog correlation. In: Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, p. 12. USENIX
Association (2007)

Gu, G., Perdisci, R., Zhang, J., Lee, W., et al.: Botminer: Clustering analysis of
network traffic for protocol-and structure-independent botnet detection. In: Pro-
ceedings of the 17th Conference on Security Symposium, pp. 139-154 (2008)

Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control
channels in network traffic (2008)

Ramilli, M., Bishop, M., Sun, S.: Multiprocess malware. In: 2011 6th International
Conference on Malicious and Unwanted Software (MALWARE), pp. 8-13. IEEE
(2011)

Fan, L., Wang, Y., Cheng, X., Li, J., Jin, S.: Privacy theft malware multi-process
collaboration analysis. In: Security and Communication Networks (2013)

Ma, W., Duan, P., Liu, S., Gu, G., Liu, J.-C.: Shadow attacks: Automatically
evading system-call-behavior based malware detection. Journal in Computer Vi-
rology 8(1-2), 1-13 (2012)

Microsoft security intelligence report,
http://www.microsoft.com/security/sir/story/default.aspx#!zbot

(accessed November 2013)

Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317-331.
IEEE (2010)

Park, Y., Reeves, D.S.: Identification of bot commands by run-time execution mon-
itoring. In: Annual Computer Security Applications Conference, ACSAC 2009,
pp. 321-330. IEEE (2009)

Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: Picking command and
control connections from bot traffic. In: USENIX Security Symposium (2011)
http://www.nektra.com/products/deviare-api-hook-windows/

(accessed November 2013)

Liu, L., Chen, S., Yan, G., Zhang, Z.: Bottracer: Execution-based bot-like malware
detection. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS,
vol. 5222 pp. 97-113. Springer, Heidelberg (2008)

Zander, S., Armitage, G., Branch, P.: A survey of covert channels and countermea-
sures in computer network protocols. IEEE Communications Surveys and Tutori-
als 9(3), 44-57 (2007)

Aciigmez, O., Kog, C.K., Seifert, J.-P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security, pp. 312-320. ACM (2007)

Percival, C.: Cache missing for fun and profit (2005)

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M.,
Wang, L.: On the analysis of the zeus botnet crimeware toolkit. In: 2010 Eighth
Annual International Conference on Privacy Security and Trust (PST), pp. 31-38.
IEEE (2010)

http://www.microsoft.com/security/sir/story/default.aspx%23!zbot
http://www.nektra.com/products/deviare-api-hook-windows/

	Preface
	ISPEC 2014
	Table of Contents
	Invited Papers from Keynote Speakers
	Access Control in and Around the Browser
	1 Introduction
	2 Access Control
	2.1 Cross-Windows Attacks

	3 Mashups
	3.1 Cross-Origin Resource Sharing

	4 Cross-site Scripting
	4.1 Content Security Policy

	5 Conclusions
	References

	
Improving Thomlinson-Walker’s Software
Patching Scheme Using Standard Cryptographic
and Statistical Tools

	1 Introduction
	2 Single Editor, Constant Memory, Linear Time
	3 Single Editor, Polylogarithmic Memory, Polylogarithmic Time
	4 Multiple Editors, Linear Memory, Constant Time
	5 Multiple Editors, Polylogarithmic Memory, Polylogarithmic Time
	6 How Long Should We Wait?
	References

	
Preserving Receiver-Location Privacy
in Wireless Sensor Networks

	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Network Model
	3.2 Attacker Model

	4 Base Station Cloaking Scheme
	4.1 Overview
	4.2 Traffic Normalisation
	4.3 Routing Tables Perturbation

	5 Discussion
	6 Conclusions
	References

	Data Security and Privacy in the Cloud
	1 Introduction
	2 Confidentiality of Data and Access Control
	2.1 Encryption and Fragmentation
	2.2 Access Control Enforcement
	2.3 Private Access

	3 Data and Computation Integrity
	4 Conclusions
	References

	Forbidden City Model – Towards a Practice Relevant Framework for Designing Cryptographic Protocols

	1 Introduction
	2 Traditional Methodology
	2.1 Demonstration of the Attacks

	3 Forbidden City Model
	3.1 Model Components
	3.2 AdversaryModel
	4 Examples
	4.1 Secure Signature Creation Device
	4.2 Authentication of Identity Documents

	References

	Network Security
	A CAPTCHA Scheme Based
on the Identification of Character Locations

	1 Introduction
	2 Background
	2.1 Usability versus Security
	2.2 Segmentation Resistance
	2.3 CAPTCHA Segmentation Techniques

	3 Design of the Proposed CAPTCHA Scheme
	4 Results and Discussion
	4.1 User Study
	4.2 Security

	5 Conclusion
	References

	A Mulitiprocess Mechanism of Evading
Behavior-Based Bot Detection Approaches

	1 Introduction
	2 Evasion Mechanism of Multiprocess Bot
	2.1 Specific Features of Multiprocess Bot
	2.2 Evading Behavior-Based Bot Detection Approaches

	3 Critical Challenges of Multiprocess Bot
	4 Experiments
	4.1 Prototype Architecture
	4.2 Signature Analysis
	4.3 Behavior Analysis

	5 Extended Architectures of Multiprocess Bot
	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	References

	Obfuscating Encrypted Web Traffic
with Combined Objects

	1 Introduction
	2 Traffic Analysis in Encrypted Web Flows
	2.1 HTTP Traffic
	2.2 Traffic Analysis
	2.3 The Padding-Based Countermeasures

	3 The Combined Object

	4 Constructing the Combined Objects
	4.1 The CO-enabled HTML Document
	4.2 The Communications for Combined Objects

	5 Experiments and Discussions
	5.1 The Experiment Setup
	5.2 Visiting Web Pages with CoOBJ Method via HTTPS and SSH
	5.3 The CoOBJ Method against Different Classifiers
	5.4 Time Cost for the CoOBJ Method
	5.5 Discussions
	5.6 Related Work

	6 Conclusion
	References

	A Website Credibility Assessment Scheme Based
on Page Association

	1 Introduction
	2 Related Work
	3 Page Association Based Website Credibility Assessment
	3.1 Assessment Features Extraction and Aggregation Analysis
	3.2 Credibility Assessment Based Malicious Page Detection

	4 Implementation as Browser Extension
	4.1 Page Script
	4.2 Global HTML Page
	4.3 Menu

	5 Performance Analysis
	6 Conclusion
	References

	System Security
	
A Methodology for Hook-Based Kernel Level
Rootkits

	1 Introduction
	2 System Overview
	2.1 Design Goals and Assumption
	2.2 Advantages

	3 Our Scheme
	4 Evaluation
	4.1 Cross View Detection Ability
	4.2 Runtime Detour for Comparison
	4.3 Current Antivirus Software Measurement

	5 Related Work
	6 Conclusions
	References

	Precise Instruction-Level Side Channel Profiling
of Embedded Processors

	1 Introduction
	2 TemplateConstruction
	3 Dimensionality Reduction
	3.1 Sum of Difference of Means
	3.2 Means-Variance
	3.3 Principal Components Analysis (PCA)
	3.4 Means-PCA
	3.5 Fisher’s Linear Discriminant Analysis (F-LDA)

	4 Instruction Classification
	4.1 Multivariate Gaussian Probability Density Function
	4.2 k-Nearest Neighbors Algorithm (kNN)

	5 Experimental Results
	5.1 Template Construction
	5.2 Dimensionality Reduction
	5.3 Instruction Classification

	6 Related Work
	7 Application and Significance
	8 Conclusion
	References

	Automated Proof for Authorization Protocols
of TPM 2.0 in Computational Model

	1 Introduction
	2 An Overview of the TPM Authorization
	2.1 Session
	2.2 Authorization Protocols

	3 Authorization Model and Security Properties
	3.1 Modelling the Authorization Protocols
	3.2 Security Properties

	4 Authentication Results with CryptoVerif
	4.1 CryptoVerif
	4.2 Assumptions
	4.3 Experiment Results

	5 Conclusions
	References

	SBE − A Precise Shellcode Detection Engine
Based on Emulation and Support Vector
Machine

	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Overview of the Proposed Method
	3.2 Data Extraction
	3.3 Features Extraction
	3.4 Feature Selection
	3.5 Performance Optimization

	4 Experiment Evaluation
	4.1 Data Set
	4.2 Detection Rate vs Libemu
	4.3 Processing Cost

	5 Conclusion
	References

	HDROP: Detecting ROP Attacks
Using Performance Monitoring Counters

	1 Introduction
	2 Design
	2.1 Interesting Performance Event
	2.2 Collecting Data
	2.3 Detecting Algorithm

	3 Implementation
	4 Evaluation
	4.1 Effectiveness
	4.2 Performance

	5 Discussion
	6 Related Work
	6.1 Gadget-Less Solution
	6.2 Abnormity-Detecting Solution

	7 Conclusion
	References

	Security Practice
	Efficient Hardware Implementation of MQ
Asymmetric Cipher PMI+ on FPGAs

	1 Introduction
	2 Preliminaries
	2.1 Notations for PMI+
	2.2 PMI+ Encryption
	2.3 PMI+ Decryption
	2.4 Security and Parameter Selection of PMI+

	3 Design and Implementation of PMI+ Hardware
	3.1 Hardware Structure Design and Algorithm Process
	3.2 Basic Arithmetic Unit
	3.3 Implementation of Hardware Core Modules

	4 Experiment Results and Analyses
	4.1 PMI+ Basic Arithmetic Unit
	4.2 Large Power Operation in PMI+
	4.3 PMI+ Encryption and Decryption
	4.4 Performance Comparison

	5 Conclusion
	References

	High-Speed Elliptic Curve Cryptography
on the NVIDIA GT200 Graphics Processing Unit

	1 Introduction
	2 Preliminaries
	2.1 Graphics Processing Units (GPUs)
	2.2 Elliptic Curve Cryptography (ECC)

	3 Implementation
	3.1 Integer Representation
	3.2 Field Operations
	3.3 Group Operations and Scalar Multiplication

	4 Experimental Results
	4.1 Throughput and Latency
	4.2 Comparison with Related Work

	5 Conclusions
	References

	A Progressive Dual-Rail Routing Repair
Approach for FPGA Implementation of Crypto
Algorithm

	1 Introduction
	2 Related Work
	3 DPL Implementation Difficulties for Sizable Algorithm
	3.1 Serious Routing Congestion with Large Numbers of Components
	3.2 Unacceptable Time-Consuming Path Selection

	4 Progressive Repair Mechanism
	4.1 The Overview of Progressive Repair Mechanism
	4.2 FPGA Block Division Relevant to Algorithm Structure
	4.3 Different DPL Realization for a Single Block
	4.4 Global Process about the Nets between Blocks

	5 Validation on AES-128
	5.1 Estimation of Conflict Rate and Repair Success Rate
	5.2 Attack Results
	5.3 The Expense of Extra Performance Overhead

	6 Conclusion and Future Work
	References

	Fault-Tolerant Linear Collision Attack:
A Combination with Correlation Power Analysis

	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 Bogdanov’s Combined Side-Channel Collision Attack
	2.3 Correlation-Enhanced Collision Attack

	3 Fault-Tolerant Linear Collision Attack
	3.1 Fault-Tolerant Chain
	3.2 Framework of Fault-Tolerant Linear Collision Attack
	3.3 Experiments and Efficiency

	4 Fault-Identification Mechanism
	4.1 Procedure and Effectiveness
	4.2 Choice of Threshold in CPA

	5 Conclusion
	References

	Implementing a Covert Timing Channel
Based on Mimic Function

	1 Introduction
	2 Related Work
	3 Our Scheme
	3.1 Mimic Functions
	3.2 The Mimicry Framework
	3.3 Design Details

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Detection Resistance
	4.3 Capacity

	5 Conclusion
	References

	Detecting Frame Deletion in H.264 Video
	1 Introduction
	2 Statistical Features of Frame Deletion in H.264 Video
	3 Proposed Method
	4 Experiments
	5 Conclusion and Future Works
	References

	Security Protocols
	Efficient Adaptive Oblivious Transfer
in UC Framework

	1 Introduction
	2 Preliminaries
	2.1 Bilinear Pairing and Complexity Assumptions
	2.2 Groth-Sahai Proofs [16]
	2.3 Security Model

	3 Protocol
	4 Security Analysis
	References

	Multi-receiver Authentication Scheme for MultipleMessages Based on Linear Codes
	1 Introduction
	2 Our Construction and Main Results
	3 Security Analysis of Our Authentication Scheme
	4 Code-Based Authentication Scheme and Minimal Codewords
	5 The Authentication Scheme Based on Algebraic GeometryCodes
	6 Conclusion
	References

	Efficient Sealed-Bid Auction Protocols
Using Verifiable Secret Sharing

	1 Introduction
	1.1 Literature Review
	1.2 Motivation and Contributions

	2 Preliminaries
	2.1 Auction Protocols
	2.2 Secret Sharing

	3 Our Constructions
	3.1 Sealed-Bid Second-Price Auction Protocol Using +
	3.2 Sealed-Bid Second-Price Auction Protocol Using × and +

	3.3 Sealed-Bid Combinatorial Auction Protocol by Dynamic Programming
	3.4 Sealed-Bid Combinatorial Auction Protocol by Multiple-TSP

	4 Complexity and Properties
	5 Concluding Remarks
	References

	Information-Theoretical Secure Verifiable Secret
Sharing with Vector Space Access Structures
over Bilinear Groups

	1 Introduction
	2 Preliminaries and Definitions
	2.1 Bilinear Pairings
	2.2 Access Structure
	2.3 Notations for Two Mathematical Operations

	3 Verifiable Secret Sharing on Vector Space Access Structures over Bilinear Groups
	3.1 Secret Sharing on Vector Space Access Structures over Bilinear Groups
	3.2 Verifiable Secret Sharing on Vector Space Access Structures
over Bilinear Groups

	3.3 Correctness
	3.4 Security Analysis
	3.5 Computational Cost

	4 A Modified Scheme with Improved Efficiency
	4.1 Description of the Scheme
	4.2 Computational Cost

	5 Conclusion
	References

	Cloud Security
	Proofs of Retrievability Based on MRD Codes
	1 Introduction
	2 PoR Scheme: Definition and Security Model
	2.1 Notations and Assumptions
	2.2 PoR Scheme
	2.3 Soundness of PoR Scheme

	3 Maximum Rank Distance Codes and Gabidulin Codes
	3.1 Rank Distance Codes
	3.2 Maximum Rank Distance Codes and Gabidulin Code

	4 PoR Scheme from MRD Codes
	5 Performance Analysis
	6 The Security of the Proposed PoR Scheme
	6.1 $\epsilon
$-Soundness of the PoR Scheme

	7 Conclusion
	References

	TIMER: Secure and Reliable Cloud Storage
against Data Re-outsourcing

	1 Introduction
	2 Related Works
	3 Problem Statement and Design Goals
	3.1 System and Threat Model
	3.2 Design Goals

	4 Proposed Scheme

	4.1 Construction Overview
	4.2 TIMER Scheme

	5 Security and Performance Analysis
	5.1 Security Proof of TIMER Scheme
	5.2 Probabilistic Analysis of Data Re-outsourcing

	6 Conclusion
	References

	Improvement of a Remote Data Possession
Checking Protocol from Algebraic Signatures

	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Components of a RDPC Protocol
	2.3 Security Requirements

	3 On the Security of the RDPC Protocols
	3.1 A Brief Review of the RDPC Protocols
	3.2 Replay Attacks on the Protocols
	3.3 Deletion Attack on the Improved Protocol

	4 Our RDPC Protocol
	5 SecurityProofs
	6 Conclusion
	References

	Distributed Pseudo-Random Number
Generation and Its Application
to Cloud Database

	1 Introduction
	1.1 Related Works
	1.2 Problem Definition and Our Contributions

	2 Preliminaries
	2.1 Building Blocks
	2.2 Security Definitions and Model

	3 Our Proposal on Distributed PRNG
	3.1 Distributed Pseudo-Random Number Generator
	3.2 The Details of Our Protocol

	4 Application to Distributed Data Random Perturbation
	5 Security Proofs and Experimental Analysis
	5.1 Security Proof of the Distributed PRNG
	5.2 Security Analysis of Application of PRNG in Random Data
Perturbation

	5.3 Experimental Analysis

	6 Conclusion and Future Works
	References

	Digital Signatures
	A Provably Secure Ring Signature Scheme
with Bounded Leakage Resilience

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Plan of This Paper

	2 Preliminaries
	2.1 Information Theory Lemmas
	2.2 Computational Assumptions

	3 Modeling Ring Signature with Bounded Leakage Resilience
	4 Our Ring Signature Scheme with Bounded Leakage Resilience
	5 Security Analysis
	6 Conclusions and Future Work
	References

	Two-Party (Blind) Ring Signaturesand Their Applications
	1 Introduction
	1.1 Our Contribution
	2 Preliminary
	2.1 Bilinear Pairing
	2.2 Groth-Sahai Non-interactiveWitness-Indistinguishable Proof System
	2.3 Syntax of Two-Party Ring Signatures
	2.4 Syntax of Two-Party Blind Ring Signatures
	3 Non-interative Zero-Knowledge Proof-of-Knowledge
	3.1 ProofPDL
	3.2 ProofPWH
	4 Constructions
	4.1 A Two-Party Ring Signature Scheme
	4.2 A Blind Signature Generation Protocol for Our Two-Party Ring SignatureScheme
	5 Applications
	6 Conclusion
	References

	Efficient Leakage-Resilient Signature Schemes
in the Generic Bilinear Group Model

	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Generic Bilinear Group Model
	2.3 Entropy
	2.4 Schwartz-Zippel Lemma

	3 Definitions
	3.1 Signature Scheme
	3.2 Security
	3.3 Security in the Presence of Leakage

	4 Boneh-Lynn-Shacham Signature Scheme
	4.1 Probabilistic BLS Signature Scheme
	4.2 Leakage-Resilient Probabilistic BLS Signature Scheme

	5 Waters Signature Scheme
	5.1 Leakage-Resilient Waters Signature Scheme

	6 Comparison
	References

	Attribute-Based Signature
with Message Recovery

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Lagrange Interpolation
	3.2 Bilinear Pairing
	3.3 CDH Problem

	4 Attribute-Based Signature with Message Recovery
	4.1 Definitions
	4.2 Our Scheme
	4.3 Security Model
	4.4 Security Analysis

	5 Extended Scheme
	6 Conclusion
	References

	Encryption and Key Agreement
	An Adaptively CCA-Secure Ciphertext-Policy Attribute-Based Proxy Re-Encryption for Cloud Data Sharing

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Definitions and Security Models
	2.1 Definition of CP-ABPRE
	2.2 Security Models

	3 An Adaptively CCA-Secure CP-ABPRE
	3.1 Construction
	3.2 Security Analysis

	4 Conclusions
	References

	Multi-recipient Encryption
in Heterogeneous Setting

	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Main Techniques

	2 Basic Definitions
	3 Security Model
	4 Constructions
	4.1 Map t Strings to One String
	4.2 Basic Multi-recipient Encryption with Sender Recovery
	4.3 Security Analysis
	4.4 Stateful MRES-SR

	5 Anonymous Multi-recipient Encryption
	5.1 Analysis of Anonymity

	6 Concluding Remarks
	References

	ACP-lrFEM: Functional Encryption Mechanism
with Automatic Control Policy
in the Presence of Key Leakage

	1 Introduction
	2 Encryption with Automatic Control Policy in the Presence of Key Leakage
	3 Construction of ACP-lrFEM
	4 Analysis
	4.1 Consistency
	4.2 Subspaces for Leakage Resilience over Transformation
	4.3 Leakage-resilient Semantic Security

	5 Performance and Discussion
	5.1 Performance of Leakage Resilience
	5.2 Discussion
	5.3 Application Scenario

	6 Conclusions
	References

	Provably Secure Certificateless Authenticated
Asymmetric Group Key Agreement

	1 Introduction
	1.1 Our Contribution
	1.2 Outline

	2 Bilinear Maps and Complexity Assumption
	3 Security Model
	3.1 Participants and Notations
	3.2 The Model

	4 Strongly Unforgeable Stateful CL-B-MS Scheme
	4.1 Definition
	4.2 The Model
	4.3 Our CL-B-MS Scheme
	4.4 Security Analysis

	5 The CL-AAGKA Protocol
	5.1 The Proposal
	5.2 Security Analysis

	6 Conclusion
	References

	Theory
	New Variants of Lattice Problems
and Their NP-Hardness

	1 Introduction
	1.1 NP-Hardness Result of SVP and CVP
	1.2 Our Results and Open Problems
	1.3 Organization

	2 Preliminaries
	2.1 Lattice
	2.2 SVP and CVP
	2.3 NP-Hardness of Lattice Problems
	2.4 Subset Sum Problem

	3 NP-Hardness of Quadrant-SVP (CVP)
	3.1 Definition
	3.2 Proof of NP-Hardness

	4 NP-Hardness of Promise Variants of Quadrant Lattice Problems
	4.1 Definitions
	4.2 NP-Hardness Proofs
	4.3 Mixed Problem and Relationship with GapCVP

	5 Conclusion
	References

	Improved Preimage Attacks
against Reduced HAS-160

	1 Introduction
	2 Specification of HAS-160
	3 Related Works: Techniques for Meet-in-the-Middle Preimage Attacks
	3.1 Converting Pseudo-preimages to a Preimage
	3.2 Splice-and-Cut and Initial Structure
	3.3 The Differential Meet-in-the-Middle Technique

	4 Preimage Attack on 70-Step HAS-160
	4.1 Initial Structure
	4.2 Finding Appropriate Attack Parameters
	4.3 Improved Preimage Attack on 65-Step HAS-160

	5 Accelerated Brute-Force Search for Full HAS-160
	6 Conclusion
	References

	Modular Inversion Hidden Number Problem
Revisited

	1 Introduction
	2 Preliminaries
	2.1 Lattice
	2.2 Priority Queue

	3 ModInv-HNP and Main Result
	3.1 ModInv-HNP
	3.2 Main Result

	4 The Strategy and Proof of Main Result
	4.1 The Strategy
	4.2 Proof of Main Result

	5 Experiment Results
	6 Conclusion
	References

	On the Recursive Construction of MDS Matrices
for Lightweight Cryptography

	1 Introduction
	2 Preliminaries
	3 Construction of MDS Matrices from LFSRs
	3.1 Construction of 4 × 4 MDS Matrices

	3.2 Construction of 6 × 6 MDS Matrices

	3.3 Comparison with Known Results

	4 Conclusions
	References
	Appendix

	On Constructions of Circulant MDS Matrices
for Lightweight Cryptography

	1 Introduction
	2 Definition and Preliminaries
	3 Some Useful Results on Circulant Matrices
	4 Efficient Circulant MDS Matrices
	4.1 Efficient 4 × 4 Circulant MDS Matrices

	4.2 Efficient 8 × 8 Circulant MDS Matrices

	4.3 Efficient d × d MDS Matrices for d = 3, 5,6 and 7

	5 Conclusion
	References

	Author Index

