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Abstract-Social botnet utilizing online social network (OSN) 

as Command and Control channel (C&C) has caused enormous 
threats to Internet security. Server-side detection approaches 
mainly target on suspicious accounts, which cannot identify the 
specific bot hosts or processes. Host-side approaches target on 
suspicious process behaviors which are not robust enough to face 
the challenges of frequent variants and novel social bots. In this 
paper, we propose a novel social bot behavior detecting approach 
in the end host. Because social bot binaries or source codes are 
not easy to collect, we first design a novel social botnet, named 
wbbot, based on Sina Weibo. We analyze it from two aspects, 
wbbot architecture and wbbot behaviors. Second, we analyze the 
host behaviors of existing social botnets which come from public 
websites, other researchers, and our implementations. We identify 
six critical phases: infection, pre-defined host behaviors, establish
ment of C&C, receive the commands of botmaster, execution of 
social bot commands, and return the results. Third, we present 
our detection system which consists of three components: host 
behavior monitor, host behavior analyzer, and detection approach. 
We present behavior tree-based approach to detect social bot. 
After constructing the suspicious behavior tree, we match it with 
the template library to generate detection result. Finally, we 
collect real-world social botnet traces to evaluate the performance. 
We would like to share them for academic research. The results 
indicate that our system has an acceptable false positive rate 
of 29.6% and remarkable false negative rate of 4.5%. However, 
compared with other detection tools, our detection result is still 
remarkable. 

Keywords--online social network, social botnet, host behavior, 
botnet traces, tree similarity 

I. INTRODUCTION 

Online social network (OSN) owns a large number of users, 
facebook has more than 1 billion active users and other 15 
OSNs have more than 100 million active users [1]. Many 
malicious behaviors are hidden in the enormous network flows. 
Many conventional bots regained their youth through propagat
ing on OSN sites. Zeus botnet which is first detected in 2007 
has risen steadily in 2013 through propagating on facebook 
[2]. A new kind of bot net, named social botnet, utilizes OSN 
as C&C channel. Social bot runs on user hosts stealthily [3]. It 
controls user account on a specific OSN site and communicates 
with the botmaster. In this way, the botmaster can control social 
bots to conduct various malicious activities, such as spamming, 
phishing, and privacy theft. Social botnet has great impact on 
users and OSNs [4]. 

Social botnet is rather new with its first discovery in 2009 
[5]. It is called koobface and targets on most OSN sites, such 
as Facebook, Twitter, and MySpace. Its infection starts with 
spams spreading on these OSN sites containing provocative 

messages with a hyperlink. This link directs the user to a 
phishing website, then requires the user to install a Flash 
plugin. This plugin is a downloader of koobface components 
which will check the Internet cookies and download other 
appropriate components. With these components, koobface can 
perform many malicious activities. Another social bot, named 
Naz bot, is discovered on Twitter in 2009 [6]. Koobface 
and Naz bot are first examples of social bot, and after that 
researchers propose other prototypes [3], [7], [8], [9]. 

According to detection location, existing social bot de
tection approaches are mainly divided into two categories: 
server-side and host-side. Server-side detection approaches 
mainly use classification methods to identify bot accounts 
[10], [11], [12]. However, they cannot find the specific bot 
hosts or processes. In host-side detection, Pieter et al. propose 
an approach detecting social botnet communication through 
monitoring user activity [13]. They suppose that the commu
nication with social media is suspicious if it is not caused by 
human activity. They measure the causal relationship between 
network traffic and human activity to filter out social bot 
processes. Natarajan et al. present a detection scheme to detect 
StegoBot [14]. They analyze different entropies of images to 
show that images are generally sensitive to embedding. Based 
on the analysis, they select efficient features to construct the 
feature set. They further propose an ensemble of classifiers to 
classify the vulnerable images from social network. Erhan et 
al. analyze Naz bot to unveil the features of social bot and the 
evolution of social bot C&C mechanisms. Then they propose 
server-side and host-side detection mechanisms. 

Host-side detection approaches can capture some intrinsic 
and "expensive" features of social bots [15]. We can eliminate 
social bot processes if we can successfully detect them on 
end host. However, existing host-side detection approaches still 
face many challenges. For the causal relationship detection 
approach, human activities and network traffic is not easy to 
synchronize. On one hand, the time interval is not easy to 
quantify because there are many dynamic changing factors, 
such as network delay, operating system delay, performance 
of different computers, etc. On the other hand, many advanced 
social bots will not perform malicious activities until they have 
monitored human activities. In this way, malicious activities 
are mixed with benign human activities. These approaches also 
face the problem of low detection accuracy with new samples 
or variants. Therefore, designing effective and efficient host
side social bot detection approach has become one of the 
urgent tasks of researchers. 

In this paper, we propose a novel social bot behavior 
detection approach in the end host. Because social bot binaries 
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or source codes are not easy to collect, we first design a novel 
social botnet, named wbbot, based on Sina Weibo. We analyze 
it from two aspects, wbbot architecture and wbbot behaviors. 
Second, we analyze the host behaviors from existing social 
bots, and laboratory works of possible social bots. We identify 
six critical phases based on life cycle: infection, pre-defined 
host behaviors, establishment of C&C, receive the commands 
of botmaster, execution of social bot conunands, and return the 
results. Third, we present our detection system, including three 
components: host behavior monitor, host behavior analyzer, 
and detection approaches. In behavior tree-based detection 
approach, after constructing the suspicious behavior tree, we 
match it with the templates in the library to calculate the 
similarity and generate the final detection result. Finally, we 
collect real-world social botnet traces to evaluate the perfor
mance of our detection system. We would like to share them 
for academic research'. We enumerate the threshold from 0.05 
to 0.95 with an incremental step of 0.05 to find the best value. 
The detection results indicate that our system has an acceptable 
FP rate of 29.6% and remarkable FN rate of 4.5%. However, 
compared with other detection tools, our detection result is still 
remarkable. 

Our work makes the following contributions: 

(1) We design a social botnet, named wbbot, based on Sina 
Weibo. We analyze it from two aspects, wbbot architecture 
and wbbot behaviors. After that, we analyze host behaviors 
of existing social botnets which come from public websites, 
other researchers, and our implementations. We identify six 
critical phases based on life cycle: infection, pre-defined host 
behaviors, establishment of C&C, receive the commands of 
botmaster, execution of social bot commands, and return the 
results. 

(2) We present our detection system which consists of 
three components: host behavior monitor, host behavior ana
lyzer, and detection approach. In behavior tree-based detection 
approach, after constructing the suspicious behavior tree, we 
match it with the templates in the library to calculate the 
similarity and generate the final detection result. 

(3) We collect real-world social botnet traces to evaluate the 
performance of our detection system. We would like to share 
them for academic research. The detection results indicate that 
our system has an acceptable FP rate of 29.6% and remarkable 
FN rate of 4.5%. However, compared with other detection 
tools, our detection result is still remarkable. 

The rest of this paper is organized as follows. Section II 
presents related works. Section III presents the design and 
analysis of wbbot. Section IV presents host behaviors of social 
bot. Section V presents the methodology of our detection 
mechanism. Section VI presents experiment details and results. 
Section VII presents limitation and future works. Section VIII 
sUlmnarizes this paper. 

II. RELATED WORK 

According to detection location, existing social bot de
tection are mainly divided into two categories: server-side 
and host-side. In server-side detection, Tan et al. propose an 
approach detecting spams in user generated contents on social 
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networks [10]. They identify that sparmners exhibit unique 
non-textual patterns, such as posting activities, advertised 
spam link metrics, and spam hosting behaviors. Based on 
these nontextual features, they propose an offline detection 
approach utilizing several classification methods. Then they 
further propose a runtime spam posts detection approach 
BARS. Chu et al. propose an approach on the classification of 
human, bot, and cyborg accounts on Twitter [11]. They analyze 
the collection data of over 500,000 accounts to observe the 
difference among human, bot, and cyborg in terms of tweeting 
behavior, tweet content, and account properties. Based on 
the measurement results, they propose a classification system 
including four components: an entropy-based component, a 
spam detection component, an account properties component, 
and a decision maker. They differentiate a human, bot, or 
cyborg through combining the four components. Francisco et 
al. propose an approach combining multiple scales of users' 
interactions within a social network to discriminate humans 
and bots [12]. NEIGHBORWATCHER[16] takes advantage 
of sparnmers based configuration information to infer spam. 
VoteTrust[17] detects a false Social Network accounts using 
trust-based polling and voting graph model. It has two graph 
models which are inviting diagram (directed graph) and accept 
graph (directed weighted graph). 

Pieter et al. propose an approach detecting social botnet 
communication through monitoring user activity [13]. They 
suppose that the communication with social media is sus
picious if it is not caused by human activity. Thus they 
measure the causal relationship between network traffic and 
human activity to detect social bot. Many social bots can 
mimic user activity to evade detection mechanisms like this, 
in order to get a high detection accuracy the approach has 
to correlate more behaviors to eliminate the bias. Natarajan 
et al. present a detection scheme to detect StegoBot [14]. 
They analyze different entropies of images to show that images 
are generally sensitive to embedding. Based on the analysis, 
they select efficient features to construct the feature set. They 
further propose an ensemble of classifiers to classify the 
vulnerable images from social network. Unlike this approach, 
our approach focus on the whole set of social bots. Erhan et 
al. analyze Naz bot to unveil the features of social bot and the 
evolution of social bot C&C mechanisms. Then they propose 
server-side and host-side detection mechanisms. 

Conventional C&C detection approaches are not effective 
enough because social bot mimics human activity on social 
network, and their domain name and IF are in the white list. In 
online detection methods, they are not able to solve the source 
problem and help users to clean bot clients. Unlike existing 
host-side detection approaches, our approach can balance many 
bias with a great number of accurate behaviors. 

III. DESIGN AND ANALY SIS OF WBBOT 

To better understand the behaviors of social bots on host, 
we designed wbbot which acts on Sina Weibo. We will 
introduce wbbot from two aspects: wbbot architecture and 
wbbot behaviors. 

A. Wbbot Architecture 

Wbbot master uses Sina Weibo to control wbbots and 
collect information. Figure 1 represents wbbot architecture, (a) 



represents the botnet architecture, and (b) details wbbot control 
flow on host. Wbbot first try to use IE to login weibo.com 
with local user cookies. If failed, it will suspend for a random 
time. Otherwise, it will try to get the latest messages posted by 
botmaster. Then, it will check whether the messages have been 
received before. If they are new messages, it will try to decode 
them as commands and execute them. If the command needs 
feedback information, it will encode the feedback information 
and publish them as a comment to corresponding botmaster 
message. If the conunand does not need feedback information, 
it will wait for another command. 

Fig. I: Architecture of Wbbot ((a) represents the botnet architecture. (b) details wbbot 
control flow on host) 

(a) (b) 

B. Wbbot Behaviors 

TABLE I: Host Commands List 

Command Description 

getNetlnfo get host information (MAC. [P, username, etc. ) 
getVersion get the windows system Version 

Host exeCmd execute a DOS command 
timeExeCmd execute a DOS command at a specific time 
visit force the IE browser to open an URL 
redirect rebind the domain and lP 
pubWeiboText order wbbot to publish a message 

Social postComment order wbbot to comment a message on a user 
Network addFollowing order wbbo to follow an account 

autoAddFollowing order wbbot to automatically follow others 

Wbbot behaviors can be classified into host behavior, and 
social network behavior. Wbbot has similar host behaviors like 
other bots, it can steal private information or redirect users to 
malicious web site when they surf on the Internet. Wbbot has 
six basic commands as shown in Table I. Wbbot can perform 
some essential social network activities automatically, such as 
the four basic social commands as shown in Table I. 

IV. HOST BEHAV IORS OF SOCI AL BOTS 

In order to get common host behaviors, we analyze existing 
social bots, including two samples: koobface [5], and Naz bot 
[6], [7]; three laboratory works: stegobot [8], the bot designed 
by Boshmaf [3], and facebot [9]. We divide their behaviors 
into six different phases based on life cycle as shown in Table 
II. Then we analyze each phase in the following subsections. 

A. Phase i: infection 

Conventional botnet has many proven infection mecha
nisms, such as malicious uris with an email, unwanted mal ware 
downloading, installing cracked softwares, and infected remov
able disks [18], [19]. Besides these, social bots also rely on 

TABLE II: Host Behaviors of Social Botnet 

Social bot 

I Infection 

2 Pre-defined 
host 

behaviors 

3 Establish
ment of C&C 

4 Receive 
commands 

of botmaster 

Koobfacc Naz bot 

provocative spam 
message with a existing mechanisms 

hyperlink on OSN 

check the 
Internet cookies 

visit RSS of some 

I 
COIll11C�_�;;&C 

specific user *lccounts 
tlroUg I server 

(upd413's RSS) 

botmaster sends 
encrypted mess*lges 

to bots 
through HTfP 

RSS retums 
Base64 .. encoded 

messages 

stcgobot 

malicious urIs 
in nonnal cmails 

collect email address 
and passwords, 

or credit card number 
or log all keystrokes 

use unage 
steg*lnography 

to share images 

download several 
recent Images 
of bot master 

bot designed 
by Boshmaf 

CXlstlllg 
mechanisms 

connect to 
botmaster server 
through HTTP 

several commands, most commands 
decrypt the 

5 Execution of mess*lges, 
decrypt the lext, such as receive target on 

soci*ll bot download other 
commands components and 

execute them 

different components 

visit uris in the text, search keywords from OSN sites, 
downloads malicious the botmaster, respond including read, 

tile and execute it with matches write, connect, 
from the filesystem disconnect, etc. 

connect with steal user infonnation 

6 Return 
the results 

different C&C and send them to 
server and execute 

different commands, 
including spreading 

koobface urI 

the server controlled 
by botmasler 

through H'nv 

uplo*ld images with 
hidden infonnalion 

return 
the infonnation 

to botm*lster 
using HTTP 

facebot 

existing 
mechanisms 

steal sensitive 
infonnation, 

like password 

Image 
steganography 

bot and botmaster 
join the same 

facebook group, 
botmaster scans 

the profile image 
of every 

new member 

OSN sites to propagate. As shown in Table II, koobface con
trols user accounts to send spams containing a catchy message 
with a malicious uri [5]. Because of the specific feature of OSN 
sites, all the friends of the user will receive this message. In 
this way, koobface can reach a very high propagation speed. 
Stegobot utilizes a more advanced mechanism [8]. The first 
way is writing email lures to deliver bots combined with the 
use of email communication networks. A more effective way 
is to replay a stolen email containing an attachment of a 
malicious payload to reply to a friend. Other three bots utilize 
existing mechanisms. 

We summarize the infection behaviors in Table III. We 
use A to denote the set of infection ways and A 
{A[l], A [2], A[3]}. A[l] denotes the browser behavior of down
loading suspicious binaries, for example, the fake flash plugin 
of koobface. A[2] denotes downloading binary attachment of 
emails, for example, the propagation mechanism of stegobot. 
A[3] denotes new binaries coming from other ways, for exam
ple, the removable disks. 

B. Phase 2: Pre-defined Host Behaviors 

Social bots mainly target on OSN sites, thus they perform 
different host behaviors with conventional bots. As shown in 
Table II, koobface checks the Internet cookies to find out the 
OSN sites that the user used [5]. Stegobot scans system files 
to collect email address and passwords, or credit card number, 
or log all keystrokes [8]. Facebot steals sensitive information, 
like user accounts, passwords [9]. Besides these OSN related 
operations, they also have some conventional operations to 
ensure them working well. 

We summarize possible pre-defined host behaviors in 
Table III. We use B to denote the set and B 
{B[I],B[2],B[3],B[4],B[5],B[6]}. B[l-4] denotes behav
iors similar with conventional bots and B[5-6] denotes specif
ic social bot behaviors. B[l] denotes modifying the bootstrap 
list of system, for example, modifying bootstrap Registry keys 
including Run, Runonce and other Registry keys. B[2] denotes 
modifying the bootstrap list of browser, for example, using 
Browser Helper Objects (BHO). B[3] denotes logging all the 
keystrokes, like the techniques used by anti keylogger. B[4] 



denotes stealing sensitive information, such as the user files 
browsing history. B[5] denotes checking Internet cookies. B[6] 
denotes monitoring OSN operations, email operations, etc. 

C. Phase 3: Establishment of C&C Channel 

Social bots have many different mechanisms of establishing 
C&C channel as shown in Table II. Koobface connects to 
C&C server through HTTP to establish the C&C channel 
[5], and the bot designed by Boshmaf [3] also uses this 
mechanism. Naz bot visits Really Simple Syndication (RSS) 
of some specific user accounts to establish [7]. Stegobot share 
images to establish C&C channel using image steganography 
to hide the sensitive information [8]. Facebot also utilizes 
image steganography to establish C&C by hiding sensitive 
information in user profile picture [9]. 

We summarize possible C&C mechanisms in Table III. We 
use C to denote the set of ways establishing C&C mechanisms 
and C = {C[l], C[2], C[3], C[4]}. C[l] denotes automatically 
connecting some specific HTTP servers to establish C&C 
mechanism, such as koobface and the bot designed by Bosh
maf. C[2] denotes automatically uploading messages. A bot 
can use encrypted messages as C&C mechanism. C[3] denotes 
automatically uploading pictures to establish C&C channel, 
such as stegobot and facebot. C[4] denotes automatically visit 
some specific users, such as the RSS, user profile, etc. 

D. Phase 4: Receive the Commands of Botmaster 

As shown in Table II, the botmaster of koobface sends 
encrypted messages to bots through HTTP. Naz bot visits 
the RSS of a specific twitter user to get a Base64-encoded 
message. Stegobot visits a specific user account and downloads 
its several recent images. However, social bot is different with 
conventional bot in spreading commands. In conventional bot, 
it is a "push" model, that means the botmaster sends the 
commands to the bots. For example, in HTTP-based Zeus 
bot, the bots passively waiting for the commands of botmaster. 
However, in social bots, it is more like a "pull" model, that 
means the bot proactive gain the commands of botmaster. 

As shown in Table III, D denotes the set of ways receiving 
commands from botmaster and D = {D[l], D[2], D[3]}. 
D[l] denotes the bot automatically downloading some spe
cific user messages. It is related with the C&C mechanism 
of automatically uploading messages. D[2] denotes the bot 
automatically downloading some specific user pictures, such as 
stegobot. D[3] denotes the bot automatically downloading user 
profiles. It is related with the C&C mechanism of automatically 
visiting some specific users. D[4] denotes the bot automatically 
listening on a port and receive messages. This is a conventional 
HTTP-based mechanism. 

E. Phase 5: Execution of Social Bot Commands 

Social bots mainly perform malicious behaviors related 
with OSN sites. As shown in Table II, koobface decrypts the 
message, downloads related components, and executes them. 
Then they will perform many different malicious behaviors. 
In Naz bot, it will decrypt the text message, visit the uris 
in the message, download malicious file and execute it [7]. 
In stegobot, it has several OSN related commands, such as 
receiving search keywords from the botmaster, and responding 

TABLE ill: Behaviors of Different P hases 

P hase Notation Description 

A[I ] browser download suspicious binaries 
I A[2] download the binary attachment of emails 

A[3] other suspicious binaries coming from outside 

B[I ] modifying bootstrap list of system 

B[2] modifying bootstrap list of browser 
2 B[3] log all the keystrokes 

B[4] stealing sensitive information 
B[5] checking Internet cookies 
B[6] monitoring OSN operations. email operations, etc. 

C[I ] automatically connect some specific HTTP servers 

3 C[2] automatically upload messages 
C[3] automatically upload pictures 
C[4] automatically visit some specific users 

0[1] automatically download some specific user messages 

4 0[2] automatically download some specific user pictures 
0[3] automatically download user profiles 
0[4] automatically listen on a port and receive messages 

E [I ] commands executing in the host 

5 E [2] commands executing on OSN sites 
E [3] commands related with HTTP 

F[I ] Return the encrypted information to HTTP server 
F[2] Find the botmaster account and review the information 

6 F[3] Automatically join a specific chat group 
F[4] Automatically publish suspicious messages 
F[5] Automatically upload suspicious pictures 

with matches from the filesystem [8]. In the bot designed by 
Boshmaf, most commands focus on OSN sites, such as read, 
write, connect, and disconnect [3]. 

We divide the commands into three categories based on the 
operating location, host, OSN, and HTTP server as shown in 
Table III. We use E to denote the set of execution of social 
bot commands and E = {E[l], E[2], E[3]}. E[l] denotes 
the cOlmnands executing in the host, such as the data stealer 
component of koobface. E[2] denotes the commands executing 
on OSN sites, such as connect, read, write, and disconnect 
commands of stegobot. E[3] denotes the commands related 
with HTTP, such as rogue DNS changer of koobface. 

F Phase 6: Return the Results 

After the commands are successfully executed, the bots will 
return the results. As shown in Table II, different components 
of koobface return results to specific servers through OSN and 
HTTP. Naz bot steals user information and sends them to the 
server through HTTP, and the bot designed by Boshmaf also 
returns the results through HTTP. Stegobot uploads images 
with hidden information to return the results. Facebot also 
uploads images with hidden information, while it targets on 
the profile picture. At the same time, the bot and botmaster 
join the same Facebook group. Then the botmaster scans the 
profile image of every new member and decrpyts the picture 
to gain the sensitive information. 

We summarize the possible mechanisms in Table III. 
We utilize F to denote the set of returning results and 
F = {F[l], F[2], F[3], F[4], F[5]}. F[l] denotes returning the 
encrypted information to HTTP server like the mechanism 
of Naz bot. F[2] denotes finding the botmaster account and 
reviewing the information. F[3] denotes automatically joining 
a specific chat group like facebot. F[4] denotes automatically 
publishing suspicious messages. F[5] denotes automatically 
uploading suspicious pictures like stegobot and facebot. 



V. METHODOLOG Y 

A. System Architecture 

Figure 2 shows the architecture of our social bot detection 
system, which primarily consists of three components: behav
ior monitor, behavior analyzer, and detection approach. 

Fig. 2: Detection System Architecture 
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Behavior monitor contains three modules: mouse/keyboard 
monitor, host behavior monitor, and network behavior monitor. 
Mouse/Keyboard monitor records human mouse and keyboard 
operation. Host behavior monitor records run-time system 
events of Registry and file system. Network behavior monitor 
records run-time network inflows and outflows. We utilize 
pyhook to monitor human mouse/keyboard operation, the sim
ilar techniques as Process Monitor to monitor host behaviors, 
and Microsoft Network Monitor to monitor network behav
iors. They all generate corresponding log files at a constant 
time window which is set to 20 minutes in our experiment. 
Behavior analyzer component also contains three modules in 
correspondence with the former component: mouse/keyboard 
analyzer, host behavior analyzer, and network behavior analyz
er. The analyzers extract corresponding behaviors and generate 
analysis report for component 3. Behavior tree-based approach 
first construct the behavior tree, then match it with template 
library to generate the final detection result. 

B. Behavior Tree-based Approach 

1) Behavior Tree Representation: We formally define be
havior tree as: T = (V, E), where V is the set of vertices, E 
is the set of edges. Each vertice represents a behavior and 
the depth is three. We utilize LI to denote the root layer 
and L4 to denote the leaf layer. In behavior tree architecture, 
LI represents the categories of our detection result, including 
social bot, and benign. Suppose LI layer represents social 
bot, then L2 layer is composed of the six phases described 
in Section IV. For every node in L2, the children nodes in L3 
are the specific behaviors of the phase set. The nodes in L4 
represents the different implementations of each behavior. We 
take an example of B[l] as shown in Figure 3. 

Fig. 3: Behavior Tree Architecture Fig. 4: Flagged Behavior Tree 

2) Behavior Tree Construction: After received the analy
sis reports of behaviors in L4 from Component 2, we will 
construct the behavior tree from bottom to top. Once the 
behavior in L4 layer is identified, we will flag the node, then 
its parent node in L3 layer will also be flagged, and the same 
to L2 layer. After the construction process, we will get its 
behavior tree. For example, the suspicious process has the 
following behaviors: modifying the Registry value of Run, 
check Internet cookies, and automatically upload messages 
using POST function to OSN sites. Thus we will construct 
its behavior tree as shown in Figure 4. After the construction 
procedure, we will match it with the template library. 

Algorithm 1 Behavior Tree Construction Algorithm 

Input: 
The node set in L4 layer of behavior tree 

Output: 
The flagged behavior tree 

1: E mpty all the child pointers of each node in the whole tree 

2: for b in behavior node set do 
3: k = b 
4: while k --+ parent"" NULL do 
5: flag k 
6: add k as a child of k --+ parent 
7: if k --+ parent is flagged then 
8: break 
9: else 

10: k = k --+ parent 
11: end if 
12: end while 
13: end for 
14: return root 

Behavior tree construction algorithm is shown in Algorithm 
1, we initialize every node has the parent node pointer. From 
our analysis reports of Component 2, we can extract the 
specific behaviors in L4 layer. We empty all the child pointers 
of each node in the whole tree, then we flag the tree from 
bottom to top. After the construction algorithm, only the root 
node is not flagged and we can visit all the flagged nodes from 
the root node. 

3) Template Library Construction: Template library con
struction is an off-line process that is based on three aspects: 
existing social bot samples, possible social bots of laboratory 
works, possible implementations from our analysis. If we only 
extract the templates of existing social bots, we cannot detect 
novel social bots. Thus, we add the templates of possible 
laboratory works, such as stegobot, bot designed by Boshmaf, 
and facebot. In order to deal with the problem of frequent 
variants, we manually analyze the specific behaviors to find 
out the "expensive" ones [15]. In this way, we build the social 
bot behavior tree template library. 

4) Behavior Tree Match: After constructing the suspicious 
behavior tree, we will match it with the template library. 
We calculate the similarity between the suspicious behavior 
tree with every template to find out the highest similarity 
value. Through comparing the similarity with a threshold to 
determine whether it is social bot or benign. 

We utilize tree edit distance to calculate the similarity. The 
tree edit distance between ordered labeled trees is the minimal
cost sequence of node edit operations that transforms one tree 
into another. There are three edit operations on labeled ordered 
trees: (1) Delete a node and connect its children to its parent 
with the original order; (2) Insert a node between an existing 
node and a subsequence of consecutive children of this node; 



(3) Rename the label of a node. In tree edit distance algorithms, 
Demaine et al. propose an algorithm with O( n2m(1 + log �)) 
time complexity and O(mn) space complexity [20], m, n 
denote the number of tree nodes. After that Pawlik and Augsten 
propose a robust tree edit distance algorithm (RTED) with 
O(n3) time complexity and O(mn) space complexity [21]. 

We select RTED algorithm to calculate the edit distance 
of behavior trees. We utilize d to denote the edit distance of 
two behavior trees and s to denote the similarity. In the worst 
situation of calculating edit distance is that the labels are totally 
different, then the cost is max( m, n) with delete and rename 
operation. Thus the value of d is between [0, max(m, n)]. We 
can utilize Equation 1 to calculate the similarity of two trees. 
We utilize e to denote the threshold and if s ?: e then the 
root node will be flagged as social bot, otherwise benign. The 
behavior tree match algorithm is shown in Algorithm 2, after 
the algorithm we can flag the process as social bot or benign. 

d 
s = 1 - -----:-----,max(m,n) 

Algorithm 2 Behavior Tree Match Algorithm 
Input: 

Suspicious behavior tree t 
Output: 

The result of rool node 
1: set max_s = 0 
2: for T in Template do 
3: d = RTED(t, T) 
4: s = 1 - =ax(Llengfh,T.length) 
5: if s � max_s then 
6: max_s = s 
7: end if 
8: end for 
9: if max_s � (J then 

10: flag the rool node as social bot 
11: else 
12: flag the root node as benign 
13: end if 

VI. EXPERIMENT 

A. Data Collection 

(1) 

We have evaluated the performance of our system in 
detecting seven types of social bots with real-world traces. 
We obtained the binaries of koobface from public web sites. 
The author of Twitterbot shared their source code with us [22]. 
Pieter et al. shared TWebot builders and binaries with us [23]. 
Based on the description provided by Yazan Boshmaf et al. [3], 
we re-implemented it and named it yazanbot. Based on the 
analysis of Nazbot in [7], we re-implemented it and named 
it fixNazbot. Besides wbbot, we also design tbbot based on 
facebook using similar techniques. We set up VMWare virtual 
machines running Windows XP. While running these bots, we 
request users to operate the host normally as usual. Both the 
benign and malicious behaviors were captured by our system. 
Table IV shows the details of these traces. 

B. Experiment Results 

We use all the traces to evaluate the performance of our 
system. In our experiment, if a benign process is misclassified 
as malicious, it will be regarded as a false positive (FP). 
If a malicious process is misclassified as benign, it will be 

TABLE IV: Social Bol Traces 

Trace Duration Size 

Koobface 24 h 5.32 GB 
Twitterbot 24 h 8.36 GB 

TWebol 18 h 2.77 GB 
Yazanbol 24 h 7.36 GB 

FixNazbot 24 h 4.99 GB 
Wbbot 18 h 11.5 GB 
Fbbot 5 h 4.65 GB 

regarded as a false negative (FN). In the same way, we define 
true positive (TP) and true negative (TN). We first take an 
experiment to find the best values for e. Parameter e is the 
final threshold for determining whether a suspicious process 
is suspicious or benign. We use F-measure to evaluate it, 
which provides comprehensive and accurate result [24]. We 
enumerate e value from 0.05 to 0.95 with an incremental step 
of 0.05. As shown in Figure 5, except for koobface, others all 
reach a F-measure value greater than 0.8. Almost all of them 
get robust and high F-measure values when e is set to 0.8. 
With these observations, we select 0.8 as the final e value. 

Fig. 5: F-measure Value of Different (J 
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For each trace, we get the detection result of every time 
window, and present the average results in Tabel V. We use FP 
rate and FN rate to represent detection results. We also present 
the total detection results. The FP rate of all the traces are from 
15% to 36%, and the total FP rate is 29.6%. The FP rate is a 
little high, which lies in that many processes perform similar 
behaviors with social bots, especially the automatic OSN 
softwares, such as weibo desktop, renren desktop. Besides 
that, most social bots mimic user activities or benign software 
activities. They can also generate many benign behaviors to 
reduce their suspicious level. 

TABLE v: Detection Result 

Trace Avg FP Rate Avg FN Rate 

Koobface 35.9% 31.8% 
FixNazbot 34.7% 0% 
Yazanbot 35.0% 0% 

Twitterbot 15.4% 0% 
Fbbol 25.6% 0% 
Wbbot 35.3% 0% 

TWebot 25.2% 0% 
Total 29.6% 4.5% 

For the FN rate, koobface is 31 . 8%, others are 0%, and 
the total is 4.5%. Koobface has a such high FN rate because 
we only have their binaries and cannot configure them. In 
their binaries, the server addresses have already been shut 



down. Therefore, in koobface traces, the malicious processes 
do not have any successful C&C connections. Under this 
circumstance, koobface behaves more like a mal ware which 
only has a little suspicious host behaviors. Thus, our detection 
system has a high FN rate for koobface. However, the total FN 
rate is only 4.5%, which is still remarkable. In summary, the 
results indicate that our detection system has an acceptable FP 
rate and a remarkable FN rate. 

In order to compare with other detection tools, we analyze 
the binaries of all the social bots using VirusTotal, which 
provides detection results of popular antivirus engines and 
website scanners [25]. The results are shown in Table VI, 
the URL in the table is the ID number and the real uri 
is https:llwww.virustotal.com/en/file/URL/analysis. Koobface 
has a very high detection ratio, which is definitely detected as 
malicious. We should note that koobface is a famous mal ware 
which is already in signature databased of most antivirus 
engines. While others all have a very low detection ratio, which 
is detected by less than 3 detection tools. Compared with them, 
our detection result is more remarkable. 

TABLE VI: VirusTotal Detection Result 

File / URL Detection ratio 

Koobface (malware. exe) 
d25 f l 24698ee9afl e234e4be8772223a79d3 fea I fe5a6fOb6a39d8650b40bfa2 47/54 

Twitterbot (TwitterbotCiient. jar) 

13584 I 84aa4ecaba3c27 I d72e46d5f4a9f2ea70bc300 I b3e82f314e9d6e26cOa 0/54 

TWebot (tescbot_l . exe) 

6f94057 e05 3 2bb988f4538b66da64I ee5c7 c8f5 2cd30a2bd2fbcfa I 35b6203ac I /51 

Yazanbot (yazanbol . exe) 
02a565b257d3d2a65deae70868cd9704c84fd8afOe4f5dddd8fegea587634ff7 2/54 

FixNazbot (naz.exe) 
a 16506bbf918229922ed6040543d456403f6ebd33f7e 14ecdcdce 19d6a624c38 2/54 

Wbbot (wbbot.exe) 
cdc5572928fa4051 fae8438d9272ce7f209b0005334c 15e5932195c4e86976d4 3/53 

Fbbot (main.exe) 
4e657fa2df5fab3b3b5783a21 b 13fecdd57fa573c6e56e7cdf98a59b2f l 55865 2/54 

C. Performance Overhead 

We evaluated the running overhead of our detection system. 
The CPU and memory usage are shown in Figure 6. The 
first peak of CPU and memory usage owes to starting the 
programs. We can see that the CPU usage is low enough 
while memory usage get steady after a period of rising. As for 
the three components in our detection system, the behavior 
monitor consumes most overhead because it monitors and 
records human mouse and keyboard operation, system run
time Registry, file system and network behaviors. The behavior 
analyzer component just reads and scans the log files, which 
only consumes a litter overhead. However, in behavior-tree 
detection approach, we use Tn to denote the number of 
templates, its time complexity is O(n3Tn). The nodes number 
n is less than 200 and templates number Tn is less than 
100, thus n :s; 200 and Tn :s; 100, that means in the worst 
situation our approach needs to calculate 800,000,000 times. 
It also brings a little delay for real-time detection. We would 
like to add some heuristic mechanisms to reduce the match 
with all the trees in template library. For example, when the 
similarity exceeds the threshold, then the match is finished. 
We can also optimize the match order with frequency of high 
similarity values. In summary, our detection system consumes 
some overhead, however, we believe the remarkable detection 
result can make up for this. 

Fig. 6: CPU and Memory Usage of Our Detection System 

VII. 

A. Limitation 

LIMITATION AND FUTURE WORK 

There are several mechanisms to evasion that we can 
imagine attackers would adapt against our detection approach. 
As our approach is based on the analysis of time windows, 
efforts to divide malicious behaviors into several time windows 
are an obvious choice. Attackers can set a random time delay 
between different behaviors. In this way, they can disrupt 
our approaches. While this evasion mechanism has its own 
drawbacks, such as cookies are changed, critical processes 
are terminated, and antivirus tools may identify some suspi
cious behaviors. In summary, such mechanisms will take an 
unknown risk to evade our detection. A previous research on 
conventional bot detection of Zeng et al. accumulates some 
critical behaviors and uses the Exponential Weighted Moving 
Average (EWMA) algorithm to compute the average suspicion 
level every time window [26]. 

Another evasion mechanism is using multiple processes or 
different instantiations of the same process. In this way, every 
process only performs one or two malicious behaviors and 
acts like benign processes. A well-designed multiprocess bot 
can evade disrupt our approaches. This is a common challenge 
of detection approaches focusing on single process. Ma et al. 
present such a multiple process mechanism to evade existng 
behavior-based malware detections by dividing a mal ware into 
multiple "shadow processes" [27], [28]. However, multiple 
processes social bot has to solve the critical problems of 
bootstrap all the processes, distribution of bot functions, hidden 
inter process communication (IPC). Thus, it is also a difficult 
task for attackers. 

The FP rate of our detection system is a little higher. 
Besides social bots have similar behaviors with human or 
benign softwares, the behaviors in our detection system also 
need further optimizing. The behaviors from Phase 3 to Phase 
6 are difficult to differentiate with benign OSN softwares and 
human OSN activities. We should filter out more expensive 
and special behaviors of social bots. 

B. Future Work 

We are very interested in exploring automated ways of 
detecting social bots from both host and server side. Our 
host detection approach faces some limitations as described 
above, we will try to fix these limitations to pursue a better 
detection system. Besides detection in host, we will further 
analyze social bot behaviors in server side and hope that we 
can find some specific features. And we believe, either host 
side or server side detection approaches are able to mimic all 
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social bots, thus a correlation of them may be possible to solve 
the problems in both of them. How to correlate the malicious 
behaviors in both sides, how to solve the synchronization 
problem between them, is it able to detect social bots in real 
time? These problems are still unknown only if we take steps in 
them. As in conventional bot detection, the host and network 
correlation approach of Zeng [26] is able to solve some of 
these problems and detect different types of botnets with low 
false-positive and false-negative rates. 

VIII. CONCLUSION 

In this paper, we focused on the problem of detecting 
social bots in the end host. We implement a social botnet, 
wbbot, based on Sina Weibo. Then, we extract six phases of 
social bot in the end host: infection, pre-defined host behaviors, 
establishment of C&C, receive the commands of botmaster, 
execution of social bot commands, and return the results. 
Based on the specific behaviors of the six phases, we propose 
our detection system which consists of three components: 
host behavior monitor, host behavior analyzer, and detection 
approach. In behavior tree-based approach, after constructing 
the suspicious behavior tree, we match it with the templates 
in the library to calculate the similarity to generate the final 
detection result. Finally, we evaluate the performance of our 
approach with real social botnet traces. The results indicate that 
our system has an acceptable FP rate of 29.6% and remarkable 
FN rate of 4.5%. However, compared with other detection 
tools, our detection result is still remarkable. 
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