
Towards Social Botnet Behavior Detecting in the

End Host

Yuede Ji, Yukun He, Xinyang Jiang, and Qiang Li
College of Computer Science and Technology, Jilin University, Changchun, China

{jiydI2, heykl2, jiangxy 14}@mails.jlu.edu.cn, li_qiang@jlu.edu.cn

Abstract-Social botnet utilizing online social network (OSN)

as Command and Control channel (C&C) has caused enormous
threats to Internet security. Server-side detection approaches
mainly target on suspicious accounts, which cannot identify the
specific bot hosts or processes. Host-side approaches target on
suspicious process behaviors which are not robust enough to face
the challenges of frequent variants and novel social bots. In this
paper, we propose a novel social bot behavior detecting approach
in the end host. Because social bot binaries or source codes are
not easy to collect, we first design a novel social botnet, named
wbbot, based on Sina Weibo. We analyze it from two aspects,
wbbot architecture and wbbot behaviors. Second, we analyze the
host behaviors of existing social botnets which come from public
websites, other researchers, and our implementations. We identify
six critical phases: infection, pre-defined host behaviors, establish
ment of C&C, receive the commands of botmaster, execution of
social bot commands, and return the results. Third, we present
our detection system which consists of three components: host
behavior monitor, host behavior analyzer, and detection approach.
We present behavior tree-based approach to detect social bot.
After constructing the suspicious behavior tree, we match it with
the template library to generate detection result. Finally, we
collect real-world social botnet traces to evaluate the performance.
We would like to share them for academic research. The results
indicate that our system has an acceptable false positive rate
of 29.6% and remarkable false negative rate of 4.5%. However,
compared with other detection tools, our detection result is still
remarkable.

Keywords--online social network, social botnet, host behavior,
botnet traces, tree similarity

I. INTRODUCTION

Online social network (OSN) owns a large number of users,
facebook has more than 1 billion active users and other 15
OSNs have more than 100 million active users [1]. Many
malicious behaviors are hidden in the enormous network flows.
Many conventional bots regained their youth through propagat
ing on OSN sites. Zeus botnet which is first detected in 2007
has risen steadily in 2013 through propagating on facebook
[2]. A new kind of bot net, named social botnet, utilizes OSN
as C&C channel. Social bot runs on user hosts stealthily [3]. It
controls user account on a specific OSN site and communicates
with the botmaster. In this way, the botmaster can control social
bots to conduct various malicious activities, such as spamming,
phishing, and privacy theft. Social botnet has great impact on
users and OSNs [4].

Social botnet is rather new with its first discovery in 2009
[5]. It is called koobface and targets on most OSN sites, such
as Facebook, Twitter, and MySpace. Its infection starts with
spams spreading on these OSN sites containing provocative

messages with a hyperlink. This link directs the user to a
phishing website, then requires the user to install a Flash
plugin. This plugin is a downloader of koobface components
which will check the Internet cookies and download other
appropriate components. With these components, koobface can
perform many malicious activities. Another social bot, named
Naz bot, is discovered on Twitter in 2009 [6]. Koobface
and Naz bot are first examples of social bot, and after that
researchers propose other prototypes [3], [7], [8], [9].

According to detection location, existing social bot de
tection approaches are mainly divided into two categories:
server-side and host-side. Server-side detection approaches
mainly use classification methods to identify bot accounts
[10], [11], [12]. However, they cannot find the specific bot
hosts or processes. In host-side detection, Pieter et al. propose
an approach detecting social botnet communication through
monitoring user activity [13]. They suppose that the commu
nication with social media is suspicious if it is not caused by
human activity. They measure the causal relationship between
network traffic and human activity to filter out social bot
processes. Natarajan et al. present a detection scheme to detect
StegoBot [14]. They analyze different entropies of images to
show that images are generally sensitive to embedding. Based
on the analysis, they select efficient features to construct the
feature set. They further propose an ensemble of classifiers to
classify the vulnerable images from social network. Erhan et
al. analyze Naz bot to unveil the features of social bot and the
evolution of social bot C&C mechanisms. Then they propose
server-side and host-side detection mechanisms.

Host-side detection approaches can capture some intrinsic
and "expensive" features of social bots [15]. We can eliminate
social bot processes if we can successfully detect them on
end host. However, existing host-side detection approaches still
face many challenges. For the causal relationship detection
approach, human activities and network traffic is not easy to
synchronize. On one hand, the time interval is not easy to
quantify because there are many dynamic changing factors,
such as network delay, operating system delay, performance
of different computers, etc. On the other hand, many advanced
social bots will not perform malicious activities until they have
monitored human activities. In this way, malicious activities
are mixed with benign human activities. These approaches also
face the problem of low detection accuracy with new samples
or variants. Therefore, designing effective and efficient host
side social bot detection approach has become one of the
urgent tasks of researchers.

In this paper, we propose a novel social bot behavior
detection approach in the end host. Because social bot binaries

978-1-4799-7615-7/14/$31.00 ©2014 IEEE

or source codes are not easy to collect, we first design a novel
social botnet, named wbbot, based on Sina Weibo. We analyze
it from two aspects, wbbot architecture and wbbot behaviors.
Second, we analyze the host behaviors from existing social
bots, and laboratory works of possible social bots. We identify
six critical phases based on life cycle: infection, pre-defined
host behaviors, establishment of C&C, receive the commands
of botmaster, execution of social bot conunands, and return the
results. Third, we present our detection system, including three
components: host behavior monitor, host behavior analyzer,
and detection approaches. In behavior tree-based detection
approach, after constructing the suspicious behavior tree, we
match it with the templates in the library to calculate the
similarity and generate the final detection result. Finally, we
collect real-world social botnet traces to evaluate the perfor
mance of our detection system. We would like to share them
for academic research'. We enumerate the threshold from 0.05
to 0.95 with an incremental step of 0.05 to find the best value.
The detection results indicate that our system has an acceptable
FP rate of 29.6% and remarkable FN rate of 4.5%. However,
compared with other detection tools, our detection result is still
remarkable.

Our work makes the following contributions:

(1) We design a social botnet, named wbbot, based on Sina
Weibo. We analyze it from two aspects, wbbot architecture
and wbbot behaviors. After that, we analyze host behaviors
of existing social botnets which come from public websites,
other researchers, and our implementations. We identify six
critical phases based on life cycle: infection, pre-defined host
behaviors, establishment of C&C, receive the commands of
botmaster, execution of social bot commands, and return the
results.

(2) We present our detection system which consists of
three components: host behavior monitor, host behavior ana
lyzer, and detection approach. In behavior tree-based detection
approach, after constructing the suspicious behavior tree, we
match it with the templates in the library to calculate the
similarity and generate the final detection result.

(3) We collect real-world social botnet traces to evaluate the
performance of our detection system. We would like to share
them for academic research. The detection results indicate that
our system has an acceptable FP rate of 29.6% and remarkable
FN rate of 4.5%. However, compared with other detection
tools, our detection result is still remarkable.

The rest of this paper is organized as follows. Section II
presents related works. Section III presents the design and
analysis of wbbot. Section IV presents host behaviors of social
bot. Section V presents the methodology of our detection
mechanism. Section VI presents experiment details and results.
Section VII presents limitation and future works. Section VIII
sUlmnarizes this paper.

II. RELATED WORK

According to detection location, existing social bot de
tection are mainly divided into two categories: server-side
and host-side. In server-side detection, Tan et al. propose an
approach detecting spams in user generated contents on social

I hup:llpan.baidu.com/s/lhqvHoSO

networks [10]. They identify that sparmners exhibit unique
non-textual patterns, such as posting activities, advertised
spam link metrics, and spam hosting behaviors. Based on
these nontextual features, they propose an offline detection
approach utilizing several classification methods. Then they
further propose a runtime spam posts detection approach
BARS. Chu et al. propose an approach on the classification of
human, bot, and cyborg accounts on Twitter [11]. They analyze
the collection data of over 500,000 accounts to observe the
difference among human, bot, and cyborg in terms of tweeting
behavior, tweet content, and account properties. Based on
the measurement results, they propose a classification system
including four components: an entropy-based component, a
spam detection component, an account properties component,
and a decision maker. They differentiate a human, bot, or
cyborg through combining the four components. Francisco et
al. propose an approach combining multiple scales of users'
interactions within a social network to discriminate humans
and bots [12]. NEIGHBORWATCHER[16] takes advantage
of sparnmers based configuration information to infer spam.
VoteTrust[17] detects a false Social Network accounts using
trust-based polling and voting graph model. It has two graph
models which are inviting diagram (directed graph) and accept
graph (directed weighted graph).

Pieter et al. propose an approach detecting social botnet
communication through monitoring user activity [13]. They
suppose that the communication with social media is sus
picious if it is not caused by human activity. Thus they
measure the causal relationship between network traffic and
human activity to detect social bot. Many social bots can
mimic user activity to evade detection mechanisms like this,
in order to get a high detection accuracy the approach has
to correlate more behaviors to eliminate the bias. Natarajan
et al. present a detection scheme to detect StegoBot [14].
They analyze different entropies of images to show that images
are generally sensitive to embedding. Based on the analysis,
they select efficient features to construct the feature set. They
further propose an ensemble of classifiers to classify the
vulnerable images from social network. Unlike this approach,
our approach focus on the whole set of social bots. Erhan et
al. analyze Naz bot to unveil the features of social bot and the
evolution of social bot C&C mechanisms. Then they propose
server-side and host-side detection mechanisms.

Conventional C&C detection approaches are not effective
enough because social bot mimics human activity on social
network, and their domain name and IF are in the white list. In
online detection methods, they are not able to solve the source
problem and help users to clean bot clients. Unlike existing
host-side detection approaches, our approach can balance many
bias with a great number of accurate behaviors.

III. DESIGN AND ANALY SIS OF WBBOT

To better understand the behaviors of social bots on host,
we designed wbbot which acts on Sina Weibo. We will
introduce wbbot from two aspects: wbbot architecture and
wbbot behaviors.

A. Wbbot Architecture

Wbbot master uses Sina Weibo to control wbbots and
collect information. Figure 1 represents wbbot architecture, (a)

represents the botnet architecture, and (b) details wbbot control
flow on host. Wbbot first try to use IE to login weibo.com
with local user cookies. If failed, it will suspend for a random
time. Otherwise, it will try to get the latest messages posted by
botmaster. Then, it will check whether the messages have been
received before. If they are new messages, it will try to decode
them as commands and execute them. If the command needs
feedback information, it will encode the feedback information
and publish them as a comment to corresponding botmaster
message. If the conunand does not need feedback information,
it will wait for another command.

Fig. I: Architecture of Wbbot ((a) represents the botnet architecture. (b) details wbbot
control flow on host)

(a) (b)

B. Wbbot Behaviors

TABLE I: Host Commands List

Command Description

getNetlnfo get host information (MAC. [P, username, etc.)
getVersion get the windows system Version

Host exeCmd execute a DOS command
timeExeCmd execute a DOS command at a specific time
visit force the IE browser to open an URL
redirect rebind the domain and lP
pubWeiboText order wbbot to publish a message

Social postComment order wbbot to comment a message on a user
Network addFollowing order wbbo to follow an account

autoAddFollowing order wbbot to automatically follow others

Wbbot behaviors can be classified into host behavior, and
social network behavior. Wbbot has similar host behaviors like
other bots, it can steal private information or redirect users to
malicious web site when they surf on the Internet. Wbbot has
six basic commands as shown in Table I. Wbbot can perform
some essential social network activities automatically, such as
the four basic social commands as shown in Table I.

IV. HOST BEHAV IORS OF SOCI AL BOTS

In order to get common host behaviors, we analyze existing
social bots, including two samples: koobface [5], and Naz bot
[6], [7]; three laboratory works: stegobot [8], the bot designed
by Boshmaf [3], and facebot [9]. We divide their behaviors
into six different phases based on life cycle as shown in Table
II. Then we analyze each phase in the following subsections.

A. Phase i: infection

Conventional botnet has many proven infection mecha
nisms, such as malicious uris with an email, unwanted mal ware
downloading, installing cracked softwares, and infected remov
able disks [18], [19]. Besides these, social bots also rely on

TABLE II: Host Behaviors of Social Botnet

Social bot

I Infection

2 Pre-defined
host

behaviors

3 Establish
ment of C&C

4 Receive
commands

of botmaster

Koobfacc Naz bot

provocative spam
message with a existing mechanisms

hyperlink on OSN

check the
Internet cookies

visit RSS of some

I
COIll11C�_�;;&C

specific user *lccounts
tlroUg I server

(upd413's RSS)

botmaster sends
encrypted mess*lges

to bots
through HTfP

RSS retums
Base64 .. encoded

messages

stcgobot

malicious urIs
in nonnal cmails

collect email address
and passwords,

or credit card number
or log all keystrokes

use unage
steg*lnography

to share images

download several
recent Images
of bot master

bot designed
by Boshmaf

CXlstlllg
mechanisms

connect to
botmaster server
through HTTP

several commands, most commands
decrypt the

5 Execution of mess*lges,
decrypt the lext, such as receive target on

soci*ll bot download other
commands components and

execute them

different components

visit uris in the text, search keywords from OSN sites,
downloads malicious the botmaster, respond including read,

tile and execute it with matches write, connect,
from the filesystem disconnect, etc.

connect with steal user infonnation

6 Return
the results

different C&C and send them to
server and execute

different commands,
including spreading

koobface urI

the server controlled
by botmasler

through H'nv

uplo*ld images with
hidden infonnalion

return
the infonnation

to botm*lster
using HTTP

facebot

existing
mechanisms

steal sensitive
infonnation,

like password

Image
steganography

bot and botmaster
join the same

facebook group,
botmaster scans

the profile image
of every

new member

OSN sites to propagate. As shown in Table II, koobface con
trols user accounts to send spams containing a catchy message
with a malicious uri [5]. Because of the specific feature of OSN
sites, all the friends of the user will receive this message. In
this way, koobface can reach a very high propagation speed.
Stegobot utilizes a more advanced mechanism [8]. The first
way is writing email lures to deliver bots combined with the
use of email communication networks. A more effective way
is to replay a stolen email containing an attachment of a
malicious payload to reply to a friend. Other three bots utilize
existing mechanisms.

We summarize the infection behaviors in Table III. We
use A to denote the set of infection ways and A
{A[l], A [2], A[3]}. A[l] denotes the browser behavior of down
loading suspicious binaries, for example, the fake flash plugin
of koobface. A[2] denotes downloading binary attachment of
emails, for example, the propagation mechanism of stegobot.
A[3] denotes new binaries coming from other ways, for exam
ple, the removable disks.

B. Phase 2: Pre-defined Host Behaviors

Social bots mainly target on OSN sites, thus they perform
different host behaviors with conventional bots. As shown in
Table II, koobface checks the Internet cookies to find out the
OSN sites that the user used [5]. Stegobot scans system files
to collect email address and passwords, or credit card number,
or log all keystrokes [8]. Facebot steals sensitive information,
like user accounts, passwords [9]. Besides these OSN related
operations, they also have some conventional operations to
ensure them working well.

We summarize possible pre-defined host behaviors in
Table III. We use B to denote the set and B
{B[I],B[2],B[3],B[4],B[5],B[6]}. B[l-4] denotes behav
iors similar with conventional bots and B[5-6] denotes specif
ic social bot behaviors. B[l] denotes modifying the bootstrap
list of system, for example, modifying bootstrap Registry keys
including Run, Runonce and other Registry keys. B[2] denotes
modifying the bootstrap list of browser, for example, using
Browser Helper Objects (BHO). B[3] denotes logging all the
keystrokes, like the techniques used by anti keylogger. B[4]

denotes stealing sensitive information, such as the user files
browsing history. B[5] denotes checking Internet cookies. B[6]
denotes monitoring OSN operations, email operations, etc.

C. Phase 3: Establishment of C&C Channel

Social bots have many different mechanisms of establishing
C&C channel as shown in Table II. Koobface connects to
C&C server through HTTP to establish the C&C channel
[5], and the bot designed by Boshmaf [3] also uses this
mechanism. Naz bot visits Really Simple Syndication (RSS)
of some specific user accounts to establish [7]. Stegobot share
images to establish C&C channel using image steganography
to hide the sensitive information [8]. Facebot also utilizes
image steganography to establish C&C by hiding sensitive
information in user profile picture [9].

We summarize possible C&C mechanisms in Table III. We
use C to denote the set of ways establishing C&C mechanisms
and C = {C[l], C[2], C[3], C[4]}. C[l] denotes automatically
connecting some specific HTTP servers to establish C&C
mechanism, such as koobface and the bot designed by Bosh
maf. C[2] denotes automatically uploading messages. A bot
can use encrypted messages as C&C mechanism. C[3] denotes
automatically uploading pictures to establish C&C channel,
such as stegobot and facebot. C[4] denotes automatically visit
some specific users, such as the RSS, user profile, etc.

D. Phase 4: Receive the Commands of Botmaster

As shown in Table II, the botmaster of koobface sends
encrypted messages to bots through HTTP. Naz bot visits
the RSS of a specific twitter user to get a Base64-encoded
message. Stegobot visits a specific user account and downloads
its several recent images. However, social bot is different with
conventional bot in spreading commands. In conventional bot,
it is a "push" model, that means the botmaster sends the
commands to the bots. For example, in HTTP-based Zeus
bot, the bots passively waiting for the commands of botmaster.
However, in social bots, it is more like a "pull" model, that
means the bot proactive gain the commands of botmaster.

As shown in Table III, D denotes the set of ways receiving
commands from botmaster and D = {D[l], D[2], D[3]}.
D[l] denotes the bot automatically downloading some spe
cific user messages. It is related with the C&C mechanism
of automatically uploading messages. D[2] denotes the bot
automatically downloading some specific user pictures, such as
stegobot. D[3] denotes the bot automatically downloading user
profiles. It is related with the C&C mechanism of automatically
visiting some specific users. D[4] denotes the bot automatically
listening on a port and receive messages. This is a conventional
HTTP-based mechanism.

E. Phase 5: Execution of Social Bot Commands

Social bots mainly perform malicious behaviors related
with OSN sites. As shown in Table II, koobface decrypts the
message, downloads related components, and executes them.
Then they will perform many different malicious behaviors.
In Naz bot, it will decrypt the text message, visit the uris
in the message, download malicious file and execute it [7].
In stegobot, it has several OSN related commands, such as
receiving search keywords from the botmaster, and responding

TABLE ill: Behaviors of Different P hases

P hase Notation Description

A[I] browser download suspicious binaries
I A[2] download the binary attachment of emails

A[3] other suspicious binaries coming from outside

B[I] modifying bootstrap list of system

B[2] modifying bootstrap list of browser
2 B[3] log all the keystrokes

B[4] stealing sensitive information
B[5] checking Internet cookies
B[6] monitoring OSN operations. email operations, etc.

C[I] automatically connect some specific HTTP servers

3 C[2] automatically upload messages
C[3] automatically upload pictures
C[4] automatically visit some specific users

0[1] automatically download some specific user messages

4 0[2] automatically download some specific user pictures
0[3] automatically download user profiles
0[4] automatically listen on a port and receive messages

E [I] commands executing in the host

5 E [2] commands executing on OSN sites
E [3] commands related with HTTP

F[I] Return the encrypted information to HTTP server
F[2] Find the botmaster account and review the information

6 F[3] Automatically join a specific chat group
F[4] Automatically publish suspicious messages
F[5] Automatically upload suspicious pictures

with matches from the filesystem [8]. In the bot designed by
Boshmaf, most commands focus on OSN sites, such as read,
write, connect, and disconnect [3].

We divide the commands into three categories based on the
operating location, host, OSN, and HTTP server as shown in
Table III. We use E to denote the set of execution of social
bot commands and E = {E[l], E[2], E[3]}. E[l] denotes
the cOlmnands executing in the host, such as the data stealer
component of koobface. E[2] denotes the commands executing
on OSN sites, such as connect, read, write, and disconnect
commands of stegobot. E[3] denotes the commands related
with HTTP, such as rogue DNS changer of koobface.

F Phase 6: Return the Results

After the commands are successfully executed, the bots will
return the results. As shown in Table II, different components
of koobface return results to specific servers through OSN and
HTTP. Naz bot steals user information and sends them to the
server through HTTP, and the bot designed by Boshmaf also
returns the results through HTTP. Stegobot uploads images
with hidden information to return the results. Facebot also
uploads images with hidden information, while it targets on
the profile picture. At the same time, the bot and botmaster
join the same Facebook group. Then the botmaster scans the
profile image of every new member and decrpyts the picture
to gain the sensitive information.

We summarize the possible mechanisms in Table III.
We utilize F to denote the set of returning results and
F = {F[l], F[2], F[3], F[4], F[5]}. F[l] denotes returning the
encrypted information to HTTP server like the mechanism
of Naz bot. F[2] denotes finding the botmaster account and
reviewing the information. F[3] denotes automatically joining
a specific chat group like facebot. F[4] denotes automatically
publishing suspicious messages. F[5] denotes automatically
uploading suspicious pictures like stegobot and facebot.

V. METHODOLOG Y

A. System Architecture

Figure 2 shows the architecture of our social bot detection
system, which primarily consists of three components: behav
ior monitor, behavior analyzer, and detection approach.

Fig. 2: Detection System Architecture

- ------ , - ------ , r Component I: \ r Component 2:
I Behavior Monitor I

I Behavior Analyzer

I Mouse/Keyboard
I

I Mouse/Keyboard
I Monitor

I
I Anal zer

I ost tlenaVlOf � I-IOst tlenaVlOf

I Monitor I Anal zcr

I Network Behavior I Network Behavior
I Monitor I I Analyzer
I I I '-------'

,------_/

Behavior monitor contains three modules: mouse/keyboard
monitor, host behavior monitor, and network behavior monitor.
Mouse/Keyboard monitor records human mouse and keyboard
operation. Host behavior monitor records run-time system
events of Registry and file system. Network behavior monitor
records run-time network inflows and outflows. We utilize
pyhook to monitor human mouse/keyboard operation, the sim
ilar techniques as Process Monitor to monitor host behaviors,
and Microsoft Network Monitor to monitor network behav
iors. They all generate corresponding log files at a constant
time window which is set to 20 minutes in our experiment.
Behavior analyzer component also contains three modules in
correspondence with the former component: mouse/keyboard
analyzer, host behavior analyzer, and network behavior analyz
er. The analyzers extract corresponding behaviors and generate
analysis report for component 3. Behavior tree-based approach
first construct the behavior tree, then match it with template
library to generate the final detection result.

B. Behavior Tree-based Approach

1) Behavior Tree Representation: We formally define be
havior tree as: T = (V, E), where V is the set of vertices, E
is the set of edges. Each vertice represents a behavior and
the depth is three. We utilize LI to denote the root layer
and L4 to denote the leaf layer. In behavior tree architecture,
LI represents the categories of our detection result, including
social bot, and benign. Suppose LI layer represents social
bot, then L2 layer is composed of the six phases described
in Section IV. For every node in L2, the children nodes in L3
are the specific behaviors of the phase set. The nodes in L4
represents the different implementations of each behavior. We
take an example of B[l] as shown in Figure 3.

Fig. 3: Behavior Tree Architecture Fig. 4: Flagged Behavior Tree

2) Behavior Tree Construction: After received the analy
sis reports of behaviors in L4 from Component 2, we will
construct the behavior tree from bottom to top. Once the
behavior in L4 layer is identified, we will flag the node, then
its parent node in L3 layer will also be flagged, and the same
to L2 layer. After the construction process, we will get its
behavior tree. For example, the suspicious process has the
following behaviors: modifying the Registry value of Run,
check Internet cookies, and automatically upload messages
using POST function to OSN sites. Thus we will construct
its behavior tree as shown in Figure 4. After the construction
procedure, we will match it with the template library.

Algorithm 1 Behavior Tree Construction Algorithm

Input:
The node set in L4 layer of behavior tree

Output:
The flagged behavior tree

1: E mpty all the child pointers of each node in the whole tree

2: for b in behavior node set do
3: k = b
4: while k --+ parent"" NULL do
5: flag k
6: add k as a child of k --+ parent
7: if k --+ parent is flagged then
8: break
9: else

10: k = k --+ parent
11: end if
12: end while
13: end for
14: return root

Behavior tree construction algorithm is shown in Algorithm
1, we initialize every node has the parent node pointer. From
our analysis reports of Component 2, we can extract the
specific behaviors in L4 layer. We empty all the child pointers
of each node in the whole tree, then we flag the tree from
bottom to top. After the construction algorithm, only the root
node is not flagged and we can visit all the flagged nodes from
the root node.

3) Template Library Construction: Template library con
struction is an off-line process that is based on three aspects:
existing social bot samples, possible social bots of laboratory
works, possible implementations from our analysis. If we only
extract the templates of existing social bots, we cannot detect
novel social bots. Thus, we add the templates of possible
laboratory works, such as stegobot, bot designed by Boshmaf,
and facebot. In order to deal with the problem of frequent
variants, we manually analyze the specific behaviors to find
out the "expensive" ones [15]. In this way, we build the social
bot behavior tree template library.

4) Behavior Tree Match: After constructing the suspicious
behavior tree, we will match it with the template library.
We calculate the similarity between the suspicious behavior
tree with every template to find out the highest similarity
value. Through comparing the similarity with a threshold to
determine whether it is social bot or benign.

We utilize tree edit distance to calculate the similarity. The
tree edit distance between ordered labeled trees is the minimal
cost sequence of node edit operations that transforms one tree
into another. There are three edit operations on labeled ordered
trees: (1) Delete a node and connect its children to its parent
with the original order; (2) Insert a node between an existing
node and a subsequence of consecutive children of this node;

(3) Rename the label of a node. In tree edit distance algorithms,
Demaine et al. propose an algorithm with O(n2m(1 + log �))
time complexity and O(mn) space complexity [20], m, n
denote the number of tree nodes. After that Pawlik and Augsten
propose a robust tree edit distance algorithm (RTED) with
O(n3) time complexity and O(mn) space complexity [21].

We select RTED algorithm to calculate the edit distance
of behavior trees. We utilize d to denote the edit distance of
two behavior trees and s to denote the similarity. In the worst
situation of calculating edit distance is that the labels are totally
different, then the cost is max(m, n) with delete and rename
operation. Thus the value of d is between [0, max(m, n)]. We
can utilize Equation 1 to calculate the similarity of two trees.
We utilize e to denote the threshold and if s ?: e then the
root node will be flagged as social bot, otherwise benign. The
behavior tree match algorithm is shown in Algorithm 2, after
the algorithm we can flag the process as social bot or benign.

d
s = 1 - -----:-----,max(m,n)

Algorithm 2 Behavior Tree Match Algorithm
Input:

Suspicious behavior tree t
Output:

The result of rool node
1: set max_s = 0
2: for T in Template do
3: d = RTED(t, T)
4: s = 1 - =ax(Llengfh,T.length)
5: if s � max_s then
6: max_s = s
7: end if
8: end for
9: if max_s � (J then

10: flag the rool node as social bot
11: else
12: flag the root node as benign
13: end if

VI. EXPERIMENT

A. Data Collection

(1)

We have evaluated the performance of our system in
detecting seven types of social bots with real-world traces.
We obtained the binaries of koobface from public web sites.
The author of Twitterbot shared their source code with us [22].
Pieter et al. shared TWebot builders and binaries with us [23].
Based on the description provided by Yazan Boshmaf et al. [3],
we re-implemented it and named it yazanbot. Based on the
analysis of Nazbot in [7], we re-implemented it and named
it fixNazbot. Besides wbbot, we also design tbbot based on
facebook using similar techniques. We set up VMWare virtual
machines running Windows XP. While running these bots, we
request users to operate the host normally as usual. Both the
benign and malicious behaviors were captured by our system.
Table IV shows the details of these traces.

B. Experiment Results

We use all the traces to evaluate the performance of our
system. In our experiment, if a benign process is misclassified
as malicious, it will be regarded as a false positive (FP).
If a malicious process is misclassified as benign, it will be

TABLE IV: Social Bol Traces

Trace Duration Size

Koobface 24 h 5.32 GB
Twitterbot 24 h 8.36 GB

TWebol 18 h 2.77 GB
Yazanbol 24 h 7.36 GB

FixNazbot 24 h 4.99 GB
Wbbot 18 h 11.5 GB
Fbbot 5 h 4.65 GB

regarded as a false negative (FN). In the same way, we define
true positive (TP) and true negative (TN). We first take an
experiment to find the best values for e. Parameter e is the
final threshold for determining whether a suspicious process
is suspicious or benign. We use F-measure to evaluate it,
which provides comprehensive and accurate result [24]. We
enumerate e value from 0.05 to 0.95 with an incremental step
of 0.05. As shown in Figure 5, except for koobface, others all
reach a F-measure value greater than 0.8. Almost all of them
get robust and high F-measure values when e is set to 0.8.
With these observations, we select 0.8 as the final e value.

Fig. 5: F-measure Value of Different (J

� 0.7
� r--e--

"------:
F
::-:
bb
-

O'
----,

f ---e- FixNazbot
LL 0.6 ----;.t-- Twitterbot

----+- Yazanbot

0.5 --+- Wbbot

* - - TWebot

-Koobface
0.4 0

'----
--:-0.c-2 -

�
0.4:---0:"c.6c------:0�.8-

-----'
ElValue

For each trace, we get the detection result of every time
window, and present the average results in Tabel V. We use FP
rate and FN rate to represent detection results. We also present
the total detection results. The FP rate of all the traces are from
15% to 36%, and the total FP rate is 29.6%. The FP rate is a
little high, which lies in that many processes perform similar
behaviors with social bots, especially the automatic OSN
softwares, such as weibo desktop, renren desktop. Besides
that, most social bots mimic user activities or benign software
activities. They can also generate many benign behaviors to
reduce their suspicious level.

TABLE v: Detection Result

Trace Avg FP Rate Avg FN Rate

Koobface 35.9% 31.8%
FixNazbot 34.7% 0%
Yazanbot 35.0% 0%

Twitterbot 15.4% 0%
Fbbol 25.6% 0%
Wbbot 35.3% 0%

TWebot 25.2% 0%
Total 29.6% 4.5%

For the FN rate, koobface is 31 . 8%, others are 0%, and
the total is 4.5%. Koobface has a such high FN rate because
we only have their binaries and cannot configure them. In
their binaries, the server addresses have already been shut

down. Therefore, in koobface traces, the malicious processes
do not have any successful C&C connections. Under this
circumstance, koobface behaves more like a mal ware which
only has a little suspicious host behaviors. Thus, our detection
system has a high FN rate for koobface. However, the total FN
rate is only 4.5%, which is still remarkable. In summary, the
results indicate that our detection system has an acceptable FP
rate and a remarkable FN rate.

In order to compare with other detection tools, we analyze
the binaries of all the social bots using VirusTotal, which
provides detection results of popular antivirus engines and
website scanners [25]. The results are shown in Table VI,
the URL in the table is the ID number and the real uri
is https:llwww.virustotal.com/en/file/URL/analysis. Koobface
has a very high detection ratio, which is definitely detected as
malicious. We should note that koobface is a famous mal ware
which is already in signature databased of most antivirus
engines. While others all have a very low detection ratio, which
is detected by less than 3 detection tools. Compared with them,
our detection result is more remarkable.

TABLE VI: VirusTotal Detection Result

File / URL Detection ratio

Koobface (malware. exe)
d25 f l 24698ee9afl e234e4be8772223a79d3 fea I fe5a6fOb6a39d8650b40bfa2 47/54

Twitterbot (TwitterbotCiient. jar)

13584 I 84aa4ecaba3c27 I d72e46d5f4a9f2ea70bc300 I b3e82f314e9d6e26cOa 0/54

TWebot (tescbot_l . exe)

6f94057 e05 3 2bb988f4538b66da64I ee5c7 c8f5 2cd30a2bd2fbcfa I 35b6203ac I /51

Yazanbot (yazanbol . exe)
02a565b257d3d2a65deae70868cd9704c84fd8afOe4f5dddd8fegea587634ff7 2/54

FixNazbot (naz.exe)
a 16506bbf918229922ed6040543d456403f6ebd33f7e 14ecdcdce 19d6a624c38 2/54

Wbbot (wbbot.exe)
cdc5572928fa4051 fae8438d9272ce7f209b0005334c 15e5932195c4e86976d4 3/53

Fbbot (main.exe)
4e657fa2df5fab3b3b5783a21 b 13fecdd57fa573c6e56e7cdf98a59b2f l 55865 2/54

C. Performance Overhead

We evaluated the running overhead of our detection system.
The CPU and memory usage are shown in Figure 6. The
first peak of CPU and memory usage owes to starting the
programs. We can see that the CPU usage is low enough
while memory usage get steady after a period of rising. As for
the three components in our detection system, the behavior
monitor consumes most overhead because it monitors and
records human mouse and keyboard operation, system run
time Registry, file system and network behaviors. The behavior
analyzer component just reads and scans the log files, which
only consumes a litter overhead. However, in behavior-tree
detection approach, we use Tn to denote the number of
templates, its time complexity is O(n3Tn). The nodes number
n is less than 200 and templates number Tn is less than
100, thus n :s; 200 and Tn :s; 100, that means in the worst
situation our approach needs to calculate 800,000,000 times.
It also brings a little delay for real-time detection. We would
like to add some heuristic mechanisms to reduce the match
with all the trees in template library. For example, when the
similarity exceeds the threshold, then the match is finished.
We can also optimize the match order with frequency of high
similarity values. In summary, our detection system consumes
some overhead, however, we believe the remarkable detection
result can make up for this.

Fig. 6: CPU and Memory Usage of Our Detection System

VII.

A. Limitation

LIMITATION AND FUTURE WORK

There are several mechanisms to evasion that we can
imagine attackers would adapt against our detection approach.
As our approach is based on the analysis of time windows,
efforts to divide malicious behaviors into several time windows
are an obvious choice. Attackers can set a random time delay
between different behaviors. In this way, they can disrupt
our approaches. While this evasion mechanism has its own
drawbacks, such as cookies are changed, critical processes
are terminated, and antivirus tools may identify some suspi
cious behaviors. In summary, such mechanisms will take an
unknown risk to evade our detection. A previous research on
conventional bot detection of Zeng et al. accumulates some
critical behaviors and uses the Exponential Weighted Moving
Average (EWMA) algorithm to compute the average suspicion
level every time window [26].

Another evasion mechanism is using multiple processes or
different instantiations of the same process. In this way, every
process only performs one or two malicious behaviors and
acts like benign processes. A well-designed multiprocess bot
can evade disrupt our approaches. This is a common challenge
of detection approaches focusing on single process. Ma et al.
present such a multiple process mechanism to evade existng
behavior-based malware detections by dividing a mal ware into
multiple "shadow processes" [27], [28]. However, multiple
processes social bot has to solve the critical problems of
bootstrap all the processes, distribution of bot functions, hidden
inter process communication (IPC). Thus, it is also a difficult
task for attackers.

The FP rate of our detection system is a little higher.
Besides social bots have similar behaviors with human or
benign softwares, the behaviors in our detection system also
need further optimizing. The behaviors from Phase 3 to Phase
6 are difficult to differentiate with benign OSN softwares and
human OSN activities. We should filter out more expensive
and special behaviors of social bots.

B. Future Work

We are very interested in exploring automated ways of
detecting social bots from both host and server side. Our
host detection approach faces some limitations as described
above, we will try to fix these limitations to pursue a better
detection system. Besides detection in host, we will further
analyze social bot behaviors in server side and hope that we
can find some specific features. And we believe, either host
side or server side detection approaches are able to mimic all

0 30 60 90 120 150 180
0

5

10

15

20

25

30

35

40

45

50

Time(10s)

C
P

U
 u

sa
ge

(%
)

(a)

CPU usage

0 30 60 90 120 150 180
20

40

60

80

100

120

140

160

180

200

Time(10s)

M
em

or
y

us
ag

e(
M

B
)

(b)

Memory usage

social bots, thus a correlation of them may be possible to solve
the problems in both of them. How to correlate the malicious
behaviors in both sides, how to solve the synchronization
problem between them, is it able to detect social bots in real
time? These problems are still unknown only if we take steps in
them. As in conventional bot detection, the host and network
correlation approach of Zeng [26] is able to solve some of
these problems and detect different types of botnets with low
false-positive and false-negative rates.

VIII. CONCLUSION

In this paper, we focused on the problem of detecting
social bots in the end host. We implement a social botnet,
wbbot, based on Sina Weibo. Then, we extract six phases of
social bot in the end host: infection, pre-defined host behaviors,
establishment of C&C, receive the commands of botmaster,
execution of social bot commands, and return the results.
Based on the specific behaviors of the six phases, we propose
our detection system which consists of three components:
host behavior monitor, host behavior analyzer, and detection
approach. In behavior tree-based approach, after constructing
the suspicious behavior tree, we match it with the templates
in the library to calculate the similarity to generate the final
detection result. Finally, we evaluate the performance of our
approach with real social botnet traces. The results indicate that
our system has an acceptable FP rate of 29.6% and remarkable
FN rate of 4.5%. However, compared with other detection
tools, our detection result is still remarkable.

ACKNOW LEDGEMENTS

We gratefully acknowledge the funding from the Nation
al Natural Science Foundation of China under Grant No.
61170265, Fundamental Research Fund of Jilin University
under Grant No. 201103253. Thank Mark Stamp and Pieter
Burghouwt for sharing social bots with us.

Corresponding
lLqiang@jlu.edu.cn

author: Qiang

REFERENCES

Li, Email:

[I] List of virtual communities with more than 100 million active users
(accessed June 2014).
URL http://en.wikipedia.orglwikilLisCoC virtual_communi ties_ with_m
ore_than_1 OO_mill ion_users

[2] Malware that drains your bank account thriving on facebook (accessed
June 2014).
URL http://bits.blogs.nytimes.com12013/06103/malware-that-drains-y
our-bank -account-thriving-on-face book!

[3] Y. Boshmaf, I. Muslukhov, K. Beznosov, M. Ripeanu, Design and
analysis of a social botnet, Computer Networks 57 (2) (2013) 556-578.

[4] Twitter bots create surprising new social connections (accessed June
2014).
URL http://www.technologyreview.com/news/426668/twitter-bots-creat
e-surprising -new-social-connectionsl

[5] J. Baltazar, J. Costoya, R. Flores, The real face of koobface: The largest
web 2.0 botnet explained, Trend Micro Research 5 (9) (2009) 10.

[6] Twitter based botnet command and control (accessed June 2014).
URL http://asert.arbornetworks.com/2009/08/twitter-based-botnet-com
mand-channel

[7] E. J. Kartaltepe, J. A. Morales, S. Xu, R. Sandhu, Social network-based
botnet command-and-control: Emerging threats and countermeasures,
in: Proceedings of the 8th International Conference on Applied Cryp
tography and Network Security, ACNS'IO, 2010, pp. 511-528.

[8] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, Y. Singh, P. Agarwal,
N. Borisov, Stegobot: A covert social network botnet, in: Proceedings of
the 13th International Conference on Information Hiding, lH' 11,2011,
pp. 299-313.

[9] J.-P. Verkamp, P. Malshe, M. Gupta, C. W. Dunn, Facebot: An undis
coverable botnet based on treasure hunting social networks.

[10] E. Tan, L. Guo, S. Chen, X. Zhang, Y. Zhao, Spammer behavior analysis
and detection in user generated content on social networks, in: Dis
tributed Computing Systems (lCDCS), 2012 IEEE 32nd International
Conference on, 2012, pp. 305-314.

[II] Z. Chu, S. Gianvecchio, H. Wang, S. Jajodia, Detecting automation
of twitter accounts: Are you a human, bot, or cyborg?, IEEE Trans.
Dependable Secur. Comput. 9 (6) (2012) 811-824.

[12] F. Brito, I. Petiz, P. Salvador, A. Nogueira, E. Rocha, Detecting social
network bots based on multi scale behavioral analysis, in: SECURWARE
2013, The Seventh International Conference on Emerging Security
Information, Systems and Technologies, 2013, pp. 81-85.

[13] P. Burghouwt, M. Spruit, H. Sips, Towards detection of botnet com
munication through social media by monitoring user activity, in: Pro
ceedings of the 7th International Conference on Information Systems
Security, ICISS'l1, 2011, pp. 131-143.

[14] Y. Natarajan, S. Sheen, R. Anitha, Detection of stegobot: A covert social
network botnet, in: Proceedings of the First International Conference
on Security of Internet of Things, SecurIT ' 12, 2012, pp. 36-41.

[15] T. Stein, E. Chen, K. Mangla, Facebook immune system, in: Proceed
ings of the 4th Workshop on Social Network Systems, ACM, 2011,
p. 8.

[16] J. Zhang, G. Gu, Neighborwatcher: A content-agnostic comment spam
inference system, in: In Proceeding of the Network and Distributed
System Security Symposium (NDSSI3), 2013.

[17] J. Xue, Z. Yang, X. Yang, X. Wang, L. Chen, Y. Dai, Votetrust:
Leveraging friend invitation graph to defend against social network
sybils, in: INFOCOM, 2013 Proceedings IEEE, IEEE, 2013, pp. 2400-
2408.

[18] S. S. C. Silva, R. M. P. Silva, R. C. G. Pinto, R. M. Salles, Botnets: A
survey, Comput. Netw. 57 (2) (2013) 378-403.

[19] M. Kammerstetter, C. Platzer, G. Wondracek, Vanity, cracks and mal
ware: Insights into the anti-copy protection ecosystem, in: Proceedings
of the 2012 ACM conference on Computer and communications secu
rity, ACM, 2012, pp. 809-820.

[20] E. D. Demaine, S. Mozes, B. Rossman, O. Weimann, An optimal
decomposition algorithm for tree edit distance, in: Automata, languages
and programming, Springer, 2007, pp. 146-157.

[21] M. Pawlik, N. Augsten, Rted: a robust algorithm for the tree edit
distance, Proceedings of the VLDB Endowment 5 (4) (2011) 334-345.

[22] A. Singh, Social networking for botnet command and control.

[23] P. Burghouwt, M. Spruit, H. Sips, Detection of covert botnet command
and control channels by causal analysis of traffic Hows, in: Cyberspace
Safety and Security, Springer, 2013, pp. 117-131.

[24] FI score - wikipedia, the free encyclopedia (accessed June 2014).
URL http://en.wikipedia.orglwiki/FI_score

[25] Antivirus scan - virustotal (accessed June 2014).
URL https:!/http://www.symantec.com/security_response/writeup.jsp?
docid=2010-011016-3514-99

[26] Y. Zeng, On detection of current and next-generation botnets, Ph.D.
thesis, The University of Michigan (2012).

[27] W. Ma, P. Duan, S. Liu, G. Gu, J.-c. Liu, Shadow attacks: automati
cally evading system-call-behavior based mal ware detection, Journal in
Computer Virology 8 (1-2) (2012) 1-13.

[28] Y. Ji, Y. He, D. Zhu, Q. Li, D. Guo, A mUltiprocess mechanism of
evading behavior-based bot detection approaches, in: 10th Information
Security Practice & Experience Conference (ISPEC 2014), 2014.

